Keywords and phrases: CVD, risk calculators, risk stratification, statistical tools, Indian population.
Received: August 26, 2022; Accepted: November 26, 2022; Published: December 22, 2022
How to cite this article: Abha Marathe, Virendra Shete and Dhananjay Upasani, Applications of statistical techniques in cardiovascular disease risk estimation for Indian population: a systematic review, JP Journal of Biostatistics 22 (2022), 59-84.http://dx.doi.org/10.17654/0973514322029
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. R. Moonesinghe, M. G. Mythen, P. Das, K. M. Rowan and M. P. Grocott, Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review, Anesthesiology 119 (2013), 959-981. doi: 10.1097/ALN.0b013e3182a4e94d. [2] G. M. Allan, F. Nouri, C. Korownyk, M. R. Kolber, B. Vandermeer and J. McCormack, Agreement among cardiovascular disease risk calculators, Circulation 127 (2013), 1948-1956. doi: 10.1161/CIRCULATIONAHA.112.000412. [3] R. B. D’Agostino, Sr, R. S. Vasan, M. J. Pencina, P. A. Wolf, M. Cobain, J. M. Massaro and W. B. Kannel, General cardiovascular risk profile for use in primary care: the Framingham heart study, Circulation 117 (2008), 743-753. doi: 10.1161/CIRCULATIONAHA.107.699579. [4] P. M. Brindle, A. McConnachie, M. N. Upton, C. L. Hart, G. Davey Smith and G. C. Watt, The accuracy of the Framingham risk-score in different socioeconomic groups: a prospective study, Br. J. Gen. Pract. 55(520) (2005), 838-845. [5] J. A. Damen et al., Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis, BMC 17 (2019), 109. [6] J. D. Berry, D. M. Lloyd-Jones, D. B. Garside and P. Greenland, Framingham risk score and prediction of coronary heart disease death in young men, Am. Heart J. 154 (2007), 80-86. doi: 10.1016/j.ahj.2007.03.042. [7] R. J. Stevens, V. Kothari, A. I. Adler and I. M. Stratton, United Kingdom Prospective Diabetes Study (UKPDS) Group, The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56), Clin. Sci. (Lond) 101 (2001), 671-679. [8] P. M. Clarke, A. M. Gray, A. Briggs, A. J. Farmer, P. Fenn, R. J. Stevens, D. R. Matthews, I. M. Stratton and R. R. Holman, UK Prospective Diabetes Study (UKDPS) Group, A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68), Diabetologia 47 (2004), 1747-1759. doi: 10.1007/s00125-004-1527-z. [9] A. J. Hayes, J. Leal, A. M. Gray, R. R. Holman and P. M. Clarke, UKPDS Outcomes Model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 years United Kingdom Prospective Diabetes Study: UKPDS 82, Diabetologia 56 (2013), 1925-1933. [10] A. Markova, M. Boyanov, D. Bakalov and A. Tsakova, Body Composition Indices and Cardiovascular Risk in Type 2 Diabetes, CV Biomarkers are not Related to Body Composition, Open Med (Wars) 17 (2020), 309-316. doi: 10.1515/med-2020-0043. [11] N. Kavaric, A. Klisic and A. Ninic, Cardiovascular risk estimated by UKPDS Risk engine algorithm in diabetes, Open Med (Wars) 13 (2018), 610-617. doi: 10.1515/med-2018-0086. [12] O. Sarfo-Kantanka, F. S. Sarfo, E. O. Ansah and I. Kyei, The effect of thyroid dysfunction on the cardiovascular risk of type 2 diabetes mellitus patients in Ghana, J. Diabetes Res. (2018), doi: 10.1155/2018/4783093. [13] A. P. Kengne, A. Patel, S. Colagiuri, S. Heller, P. Hamet, M. Marre, C. Y. Pan, S. Zoungas, D. E. Grobbee, B. Neal, J. Chalmers and M. Woodward, ADVANCE Collaborative Group, The Framingham and UK Prospective Diabetes Study (UKPDS) risk equations do not reliably estimate the probability of cardiovascular events in a large ethnically diverse sample of patients with diabetes: the Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation (ADVANCE) study, Diabetologia 53(5) (2010), 821-831. doi: 10.1007/s00125-010-1681-4. [14] D. M. Lloyd-Jones, L. T. Braun, C. E. Ndumele, S. C. Smith, Jr, L. S. Sperling, S. S. Virani and R. S. Blumenthal, Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology, J. Am. Coll. Cardiol. 73 (2019), 3153-3167. doi: 10.1016/j.jacc.2018.11.005. [15] T. Kuragaichi, Y. Kataoka, C. Miyakoshi, T. Miyamoto and Y. Sato, External validation of pooled cohort equations using systolic blood pressure intervention trial data, BMC Res. Notes 12(1) (2019), 271. doi: 10.1186/s13104-019-4293-1. [16] R. Khera et al., Performance of the pooled cohort equations to estimate atherosclerotic cardiovascular disease risk by body mass index, JAMA Netw. Open 3(10) (2020), e2023242. doi:10.1001/jamanetworkopen.2020.23242. [17] J. Hippisley-Cox, C. Coupland, Y. Vinogradova, J. Robson, M. May and P. Brindle, Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study, BMJ 335(7611) (2007), 136. doi: 10.1136/bmj.39261.471806.55. [18] J. Hippisley-Cox, C. Coupland, Y. Vinogradova, J. Robson, R. Minhas, A. Sheikh and P. Brindle, Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2, BMJ 336 (2008), 1475-1482. doi: 10.1136/bmj.39609.449676.25. [19] S. N. Ofori and O. J. Odia, Risk assessment in the prevention of cardiovascular disease in low-resource settings, Indian Heart J. 68(3) (2016), 391-398. doi: 10.1016/j.ihj.2015.07.004. [20] C. Bonner, K. Bell, J. Jansen, P. Glasziou, L. Irwig, J. Doust and K. McCaffery, Should heart age calculators be used alongside absolute cardiovascular disease risk assessment? BMC Cardiovasc. Disord. 18 (2018), Article number 19. doi: 10.1186/s12872-018-0760-1. [21] ADVANCE Management Committee, Study rationale and design of ADVANCE: action in diabetes and vascular disease--preterax and diamicron MR controlled evaluation, Diabetologia 44 (2001), 1118-1120. doi: 10.1007/s001250100612. [22] A. P. Kengne, The ADVANCE cardiovascular risk model and current strategies for cardiovascular disease risk evaluation in people with diabetes, Cardiovasc. J. Afr. 24 (2013), 376-381. doi: 10.5830/CVJA-2013-078. [23] S. H. Read, M. van Diepen, H. M. Colhoun, N. Halbesma, R. S. Lindsay, J. A. McKnight, D. A. McAllister, E. R. Pearson, J. R. Petrie, S. Philip, N. Sattar, M. Woodward and S. H. Wild, Scottish diabetes research network epidemiology group, performance of cardiovascular disease risk scores in people diagnosed with type 2 diabetes: external validation using data from the National Scottish Diabetes Register, Diabetes Care 41(9) (2018), 2010-2018. doi: 10.2337/dc18-0578. [24] M. Woodward, P. Brindle and H. Tunstall-Pedoe, SIGN group on risk estimation, Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC), Heart. 93(2) (2007), 172-176. doi: 10.1136/hrt.2006.108167. [25] V. Viswanathan, A. D. Jamthikar, D. Gupta, A. Puvvula, N. N. Khanna, L. Saba, K. Viskovic, S. Mavrogeni, M. Turk, J. R. Laird, G. Pareek, M. Miner, J. Ajuluchukwu, P. P. Sfikakis, A. Protogerou, G. D. Kitas, A. Nicolaides, A. Sharma and J. S. Suri, Integration of estimated glomerular filtration rate biomarker in image-based cardiovascular disease/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease, Int. Angiol. 39(4) (2020), 290-306. doi: 10.23736/S0392-9590.20.04338-2. [26] Link: https://www.jcpcarchives.org/full/cardiovascular-risk-stratification-in-indians-153.php, accessed on 27/10/2021. [27] P. Gupta, D. Prieto-Merino, V. S. Ajay, K. Singh, A. Roy, A. Krishnan, K. M. V. Narayan, M. K. Ali, N. Tandon, D. Prabhakaran and P. Perel, Cardiovascular risk prediction in India: comparison of the original and recalibrated Framingham prognostic models in urban populations, Wellcome Open Res. 4 (2019), 71. doi: 10.12688/wellcomeopenres. [28] R. Gupta, R. S. Khedar, K. Gaur and D. Xavier, Low quality cardiovascular care is important coronary risk factor in India, Indian Heart J. 70 Suppl 3(Suppl 3) (2018), S419-S430. doi: 10.1016/j.ihj.2018.05.002. [29] S. Gupta, R. Gudapati, K. Gaurav and M. Bhise, Emerging risk factors for cardiovascular diseases: Indian context, Indian J. Endocrinol. Metab. 17(5) (2013), 806-814. doi: 10.4103/2230-8210.117212. [30] P. Aggarwal, S. K. Sinha, D. Khanra, R. K. Nath, J. Gujral, K. K. Reddy and A. Mukherjee, Comparison of original and modified Q risk 2 risk score with Framingham risk score - an Indian perspective, Indian Heart J. 73(3) (2021), 353-358. doi: 10.1016/j.ihj.2021.01.016. [31] K. Rajendran, N. Devarajan, M. Ganesann and M. Ragunathan, Obesity, inflammation and acute myocardial infarction - expression of leptin, IL-6 and high sensitivity-CRP in Chennai Based Population, Thromb J. 10(1) (2012), 13. doi: 10.1186/1477-9560-10-13. [32] M. K. Deedi, A. M. Reddy and N. L. Kumar, Role of anthropometric measurements in development of CVD and stroke among T2DM in East Godavari District, Andhra Pradesh, India, J. Clin. Diagn. Res. 11 (2017), BC01-BC05. doi: 10.7860/JCDR/2017/25536.10165. [33] P. Purohit, K. Garg, V. Singh, S. Dwivedi and P. Sharma, Microalbuminuria in obese young and middle aged population: a potential marker of cardiovascular risk, Indian J. Clin. Biochem. 31(3) (2016), 349-352. doi: 10.1007/s12291-016-0563-z. [34] R. Green, J. Milner, E. J. Joy, S. Agrawal and A. D. Dangour, Dietary patterns in India: a systematic review, Br. J. Nutr. 116 (2016), 142-148. doi: 10.1017/S0007114516001598. [35] G. N. Kusneniwar, G. R. Jammy, D. Shailendra, C. H. Bunker and P. S. Reddy, Which obesity index is a better predictor for cardiometabolic risk factors in a young adult rural population of Telangana State, India? J. Family Med. Prim. Care 9(9) (2020), 4667-4672. doi: 10.4103/jfmpc.jfmpc_864_20. [36] R. Thomas, P. V. Ambookan, J. Jose and U. G. Unnikrishnan, The accuracy of anthropometric measurements of general and central obesity for the prediction of impaired glucose tolerance among the adult population of South India, J. Family Med. Prim. Care. 9(7) (2020), 3416-3420. doi: 10.4103/jfmpc.jfmpc_269_20. [37] P. Geldsetzer, J. Manne-Goehler, M. Theilmann, J. I. Davies, A. Awasthi, G. Danaei, T. A. Gaziano, S. Vollmer, L. M. Jaacks, T. Bärnighausen and R. Atun, Geographic and sociodemographic variation of cardiovascular disease risk in India: a cross-sectional study of 797, 540 adults, PLoS Med. 15(6) (2018), e1002581. doi: 10.1371/journal.pmed.1002581. [38] R. Gupta, S. Guptha, K. K. Sharma, A. Gupta and P. Deedwania, Regional variations in cardiovascular risk factors in India: India heart watch, World J. Cardiol. 4(4) (2012), 112-120. doi: 10.4330/wjc.v4.i4.112. [39] D. G. S. Ponraj, S. K. Gopikrishnan, A. Newtonraj, M. C. Arokiaraj, A. J. Purty, S. K. Nanda, M. Manikandan and A. Vincent, Cardiovascular risk using WHO-ISH chart among diabetes and hypertensive patients in a remote rural area of South India, J. Family Med. Prim. Care 9(8) (2020), 4145-4150. doi: 10.4103/jfmpc.jfmpc_538_20. [40] A. Agarwal, D. Jindal, V. S. Ajay, D. Kondal, S. Mandal, S. Ghosh, M. Ali, K. Singh, M. D. Huffman, N. Tandon and D. Prabhakaran, Association between socioeconomic position and cardiovascular disease risk factors in rural north India: the Solan surveillance study, PLoS ONE 14(7) (2019), e0217834. doi: 10.1371/journal.pone.0217834. [41] A. Newtonraj, K. Selvaraj, A. J. Purty, S. K. Nanda, M. C. Arokiaraj, A. Vincent and M. Manikandan, Feasibility and outcome of community-based screening for cardiovascular disease risk factors in a remote rural area of South India: the Chunampet rural-cardiovascular health assessment and management program, Indian J. Endocrinol. Metab. 23(6) (2019), 628-634. doi: 10.4103/ijem.IJEM_528_19. [42] A. M. Kokane, R. Joshi, A. Kotnis, A. Chatterjee, K. Yadav, G. Revadi, A. Joshi and A. P. Pakhare, Determinants of behavioural and biological risk factors for cardiovascular diseases from state level STEPS survey (2017-19) in Madhya Pradesh, Peer J. 8 (2020), e10476. doi: 10.7717/peerj.10476. [43] K. Premanandh and R. Shankar, Predicting 10-year cardiovascular risk using WHO/ISH risk prediction chart among urban population in Salem, International Journal of Community Medicine and Public Health 5(12) (2018), 5228-5234. [44] V. P. Menon, F. Edathadathil, D. Sathyapalan, M. Moni, A. Don, S. Balachandran, B. Pushpa, P. Prasanna, N. Sivaram, A. Nair, N. Vinod, R. Jayaprasad and V. Menon, Assessment of 2013 AHA/ACC ASCVD risk scores with behavioral characteristics of an urban cohort in India: preliminary analysis of Noncommunicable disease Initiatives and Research at AMrita (NIRAM) study, Medicine (Baltimore) 95(49) (2016), e5542. doi: 10.1097/MD.0000000000005542. [45] T. B. Sorensen, R. Wilson, J. Gregson, B. Shankar, A. D. Dangour and S. Kinra, Is night-time light intensity associated with cardiovascular disease risk factors among adults in early-stage urbanisation in South India? A cross-sectional study of the Andhra Pradesh Children and Parents Study, BMJ Open 10 (2020), e036213. doi: 10.1136/ bmjopen-2019-036213. [46] K. J. Lane, E. C. Stokes, K. C. Seto, S. Thanikachalam, M. Thanikachalam and M. L. Bell, Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India, Environ Health Perspect. 125(8) (2017), 087003. doi: 10.1289/EHP541. [47] G. Kiran, I. Mohan, M. Kaur, S. Ahuja, S. Gupta and R. Gupta, Escalating ischemic heart disease burden among women in India: insights from GBD, NCDRisC and NFHS reports, Am. J. Prev. Cardiol. 2 (2020), 100035. doi: 10.1016/j.ajpc.2020.100035. [48] S. S. Iyengar, R. Gupta, S. Ravi, S. Thangam, T. Alexander, C. N. Manjunath, R. Keshava, C. B. Patil, A. Sheela and J. P. S. Sawhney, Premature coronary artery disease in India: coronary artery disease in the young (CADY) registry, Indian Heart J. 69(2) (2017), 211-216. doi: 10.1016/j.ihj.2016.09.009. [49] M. N. Krishnan, G. Zachariah, K. Venugopal, P. P. Mohanan, S. Harikrishnan, G. Sanjay, L. Jeyaseelan and K. R. Thankappan, Prevalence of coronary artery disease and its risk factors in Kerala, South India: a community-based cross-sectional study, BMC Cardiovasc. Disord. 16 (2016), 12. doi: 10.1186/ s12872-016-0189-3. [50] I. Mohan, R. Gupta, A. Misra, K. K. Sharma, A. Agrawal, N. K. Vikram, V. Sharma, U. Shrivastava and R. M. Pandey, Disparities in prevalence of cardiometablic risk factors in rural, urban-poor, and urban-middle class women in India, PLoS ONE 11(2) (2016), e0149437. doi: 10.1371/journal.pone.0149437. [51] S. K. Vasan, B. Antonisamy, M. Gowri, H. Y. Selliah, F. S. Geethanjali, F. S. Jebasingh, T. V. Paul, N. Thomas, F. Karpe, M. Johnson, C. Osmond and C. H. D. Fall, Prevalence, incidence and predictors of cardiovascular risk factors: longitudinal data from rural and urban South India and comparison with global data, BMJ Open Diabetes Res. Care. 8(1) (2020), e001782. doi: 10.1136/bmjdrc-2020-001782. [52] C. Ke, R. Gupta, D. Xavier, D. Prabhakaran, P. Mathur, Y. V. Kalkonde, P. Kolpak, W. Suraweera and P. Jha, “Million Death Study Collaborators”, Divergent trends in ischaemic heart disease and stroke mortality in India from 2000 to 2015: a nationally representative mortality study, Lancet Glob. Health 6(8) (2018), e914-e923. doi: 10.1016/S2214-109X (18)30242-0. [53] Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 4th ed., California, Academic Press Imprint of Elsevier, 2009. [54] S. P. Gupta, Statistical Methods, 38th ed., Sultan Chand and Sons, New Delhi, 2009. [55] Douglas C. Montgomery and George C. Runger, Applied Statistics and Probability for Engineers, 3rd ed., Wiley, 2003. [56] G. Durairaj, A. T. Oommen and M. Gopalakrishna Pillai, A cross-sectional validation study comparing the accuracy of different risk scores in assessing the risk of acute coronary syndrome among patients in a tertiary care hospital in Kerala, Indian Heart J. 72(2) (2020), 113-118. doi: 10.1016/j.ihj.2020.03.011. [57] M. Bansal, R. R. Kasliwal and N. Trehan, Relationship between different cardiovascular risk scores and measures of subclinical atherosclerosis in an Indian population, Indian Heart J. 67(4) (2015), 332-340. doi: 10.1016/j.ihj.2015.04.017. [58] M. Bansal, R. R. Kasliwal and N. Trehan, Comparative accuracy of different risk scores in assessing cardiovascular risk in Indians: a study in patients with first myocardial infarction, Indian Heart J. 66(6) (2014), 580-586. doi: 10.1016/j.ihj.2014.10.399. [59] N. Garg, S. K. Muduli, A. Kapoor, S. Tewari, S. Kumar, R. Khanna and P. K. Goel, Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses, Indian Heart J. 69(4) (2017), 458-463. doi: 10.1016/j.ihj.2017.01.015. [60] P. Bhasin and S. Kapoor, Pregnancy complications and calculated cardiovascular risk in urban women: do we envisage an association? J. Urban Health 91(1) (2014), 162-175. doi: 10.1007/s11524-013-9818-7. [61] Abhishek Gaikwad and Yasmin Khan, Evaluation of discordance between 10 year cardiovascular risk scores in Indian patients presenting with myocardial infarction, Cardiology and Cardiovascular Medicine 3 (2019), 360-368. [62] T. Singh, M. Pilania, G. S. Jat and R. Kumar, Ambiguity about selection of cardiovascular risk stratification tools: evidence from a north Indian rural population, Indian J. Community Med. 43(3) (2018), 170-174. doi: 10.4103/ijcm.IJCM_255_17. [63] P. Pandey, R. Chandrakar, P. Namewar, P. Dobariya and P. Pandey, Profile of coronary artery disease cases in diabetics and non-diabetics: a comparative prospective study, International Journal of Advances in Medicine 3(3) (2016), 579-585. doi: org/10.18203/2349-3933.ijam20162498. [64] S. Ghosal, B. Sinha, J. Ved and M. Biswas, Quantitative measure of asymptomatic cardiovascular disease risk in Type 2 diabetes: evidence from Indian outpatient setting, Indian Heart J. 72(2) (2020), 119-122. doi: 10.1016/j.ihj.2020.03.010.
|