Keywords and phrases: third-order nonlinear equation, optical solitons, traveling wave solutions, Riccati-Bernoulli sub-ODE method.
Received: November 4, 2022; Revised: November 30, 2022; Accepted: December 15, 2022; Published: December 22, 2022
How to cite this article: Salisu Ibrahim, Optical soliton solutions for the nonlinear third-order partial differential equation, Advances in Differential Equations and Control Processes 29 (2022), 127-138. http://dx.doi.org/10.17654/0974324322037
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, 2011. [2] G. P. Agrawal, Nonlinear fiber optics, Nonlinear Science at the Dawn of the 21st Century, Springer, Berlin, Heidelberg, 2000. [3] A. Hasegawa, Y. Kodama and A. Maruta, Recent progress in dispersion-managed soliton transmission technologies, Optical Fiber Technology 3(3) (1997), 197-213. [4] F. Tchier, A. I. Aliyu, A. Yusuf and M. Inc, Dynamics of solitons to the ill-posed Boussinesq equation, The European Physical Journal Plus 132(3) (2017), 1-9. [5] M. Mirzazadeh, M. F. Mahmood, F. B. Majid, A. Biswas and M. Belic, Optical solitons in birefringent fibers with Riccati equation method, Optoelectron. Adv. Mater.-Rapid Commun. 9 (2015), 1032-1036. [6] S. Ibrahim, T. A. Sulaiman, A. Yusuf, A. S. Alshomrani and D. Baleanu, Families of optical soliton solutions for the nonlinear Hirota-Schrodinger equation, Opt. Quant. Electron 54(11) (2022), 1-15. https://doi.org/10.1007/s11082-022-04149-x. [7] F. Tchier, A. Yusuf, A. I. Aliyu and M. Inc, Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices and Microstructures 107 (2017), 320-336. [8] T. A. Sulaiman, A. Yusuf, A. S. Alshomrani and D. Baleanu, Lump collision phenomena to a nonlinear physical model in coastal engineering, Mathematics 10(15) (2022), p. 2805. [9] T. A. Sulaiman, U. Younas, M. Younis, J. Ahmad, S. U. Rehman, M. Bilal and A. Yusuf, Modulation instability analysis, optical solitons and other solutions to the -dimensional hyperbolic nonlinear Schrodinger’s equation, Computational Methods for Differential Equations 10(1) (2022), 179-190. [10] J. J. Fang, D. S. Mou, H. C. Zhang and Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik 228 (2021), 166186. [11] G. Tao, J. Sabi’u, S. Nestor, R. M. El-Shiekh, L. Akinyemi, E. Az-Zo’bi and G. Betchewe, Dynamics of a new class of solitary wave structures in telecommunications systems via a -dimensional nonlinear transmission line, Modern Phys. Lett. B 36(19) (2022), 2150596. [12] S. Ibrahim, Discrete least square method for solving differential equations, Advances and Applications in Discrete Mathematics 30 (2022), 87-102. http://dx.doi.org/10.17654/0974165822021. [13] A. D. Khalaf, A. Zeb, Y. A. Sabawi, S. Djilali and X. Wang, Optimal rates for the parameter prediction of a Gaussian Vasicek process, The European Physical Journal Plus 136(8) (2021), 1-17. [14] L. Akinyemi, U. Akpan, P. Veeresha, H. Rezazadeh and M. Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, Journal of Ocean Engineering and Science (2022), 1-18. https://doi.org/10.1016/j.joes.2022.02.011. [15] Y. A. Sabawi, A posteriori error analysis in finite element approximation for fully discrete semilinear parabolic problems, Finite Element Methods and their Applications, IntechOpen, 2020, pp. 1-19. [16] S. Ibrahim and M. E. Koksal, Commutativity of sixth-order time-varying linear systems, Circuits, Systems, and Signal Processing 40(10) (2021), 4799-4832. [17] S. Ibrahim and M. E. Koksal, Realization of a fourth-order linear time-varying differential system with nonzero initial conditions by cascaded two second-order commutative pairs, Circuits, Systems, and Signal Processing 40(6) (2021), 3107-3123. [18] S. Ibrahim and A. Rababah, Decomposition of fourth-order Euler-type linear time-varying differential system into cascaded two second-order Euler commutative pairs, Complexity Volume 2022, Article ID 3690019, 9 pp. https://doi.org/10.1155/2022/3690019. [19] S. Ibrahim, Commutativity of high-order linear time-varying systems, Advances in Differential Equations and Control Processes 27 (2022), 73-83. http://dx.doi.org/10.17654/0974324322013. [20] S. Ibrahim, Commutativity associated with Euler second-order differential equation, Advances in Differential Equations and Control Processes 28 (2022), 29-36. http://dx.doi.org/10.17654/0974324322022. [21] X. F. Yang, Z. C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Advances in Difference Equations 2015(1) (2015), 1-17. [22] D. Baleanu, M. Inc, A. I. Aliyu and A. Yusuf, Dark optical solitons and conservation laws to the resonance nonlinear Schrödinger’s equation with Kerr law nonlinearity, Optik 147 (2017), 248-255. [23] B. Karaman, New exact solutions of the time-fractional foam drainage equation via a Riccati-Bernoulli sub ode method, Online International Symposium on Applied Mathematics and Engineering (ISAME22), Istanbul-Turkey, 2022, 105 pp.
|