Keywords and phrases: complete metric space, fixed point, inexact iterate, uniformly locally nonexpansive mapping.
Received: November 5, 2022; Accepted: December 12, 2022; Published: December 20, 2022
How to cite this article: Simeon Reich and Alexander J. Zaslavski, Convergence of inexact iterates of uniformly locally nonexpansive mappings with summable errors, JP Journal of Fixed Point Theory and Applications 18 (2022), 1-11. http://dx.doi.org/10.17654/0973422822003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. [2] H. H. Bauschke and V. R. Koch, Projection methods: Swiss army knives for solving feasibility and best approximation problems with half-spaces, Contemporary Mathematics 636 (2015), 1-40. [3] A. Betiuk-Pilarska and T. Domínguez Benavides, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal. 1 (2016), 343-359. [4] R. E. Bruck, W. A. Kirk and S. Reich, Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces, Nonlinear Analysis 6 (1982), 151-155. [5] D. Butnariu, R. Davidi, G. T. Herman and I. G. Kazantsev, Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems, IEEE Journal of Selected Topics in Signal Processing 1 (2007), 540-547. [6] D. Butnariu, S. Reich and A. J. Zaslavski, Convergence to Fixed Points of Inexact Orbits of Bregman-monotone and of Nonexpansive Operators in Banach Spaces, Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2006, pp. 11-32. [7] Y. Censor, R. Davidi and G. T. Herman, Perturbation resilience and superiorization of iterative algorithms, Inverse Problems 26 (2010), 12 pp. [8] Y. Censor, R. Davidi, G. T. Herman, R. W. Schulte and L. Tetruashvili, Projected subgradient minimization versus superiorization, Journal of Optimization Theory and Applications 160 (2014), 730-747. [9] Y. Censor and M. Zaknoon, Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review, Pure Appl. Func. Anal. 3 (2018), 565-586. [10] Y. Censor and A. J. Zaslavski, Convergence and perturbation resilience of dynamic string-averaging projection methods, Computational Optimization and Applications 54 (2013), 65-76. [11] Y. Censor and A. J. Zaslavski, Strict Fejer monotonicity by superiorization of feasibility-seeking projection methods, Journal of Optimization Theory and Applications 165 (2015), 172-187. [12] F. S. de Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris 283 (1976), 185-187. [13] F. S. de Blasi, J. Myjak, S. Reich and A. J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-valued and Variational Analysis 17 (2009), 97-112. [14] M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10. [15] M. Gabour, S. Reich and A. J. Zaslavski, A generic fixed point theorem, Indian J. Math. 56 (2014), 25-32. [16] A. Gibali, A new split inverse problem and an application to least intensity feasible solutions, Pure Appl. Funct. Anal. 2 (2017), 243-258. [17] A. Gibali, S. Reich and R. Zalas, Outer approximation methods for solving variational inequalities in Hilbert space, Optimization 66 (2017), 417-437. [18] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990. [19] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. [20] J. Jachymski, Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points, Pure Appl. Funct. Anal. 2 (2017), 657-666. [21] W. A. Kirk, Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 1-34. [22] R. Kubota, W. Takahashi and Y. Takeuchi, Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Func. Anal. 1 (2016), 63-84. [23] T. Nikazad, R. Davidi and G. T. Herman, Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction, Inverse Problems 28 (2012), 19 pp. [24] E. Pustylnyk, S. Reich and A. J. Zaslavski, Convergence to compact sets of inexact orbits of nonexpansive mappings in Banach and metric spaces, Fixed Point Theory and Applications 2008 (2008), 1-10. [25] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465. [26] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 5 (1972), 26 42. [27] S. Reich and A. J. Zaslavski, Generic aspects of metric fixed point theory, Handbook of Metric Fixed Point Theory, Kluwer, Dordrecht, 2001, pp. 557-575. [28] S. Reich and A. J. Zaslavski, The set of noncontractive mappings is -porous in the space of all nonexpansive mappings, C. R. Acad. Sci. Paris 333 (2001), 539 544. [29] S. Reich and A. J. Zaslavski, Convergence to attractors under perturbations, Commun. Math. Anal. 10 (2011), 57-63. [30] S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. [31] S. Reich and A. J. Zaslavski, Convergence and well-posedness properties of uniformly locally contractive mappings, Topological Methods in Nonlinear Analysis, accepted for publication. [32] W. Takahashi, The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces, Pure Appl. Funct. Anal. 2 (2017), 685-699. [33] W. Takahashi, A general iterative method for split common fixed point problems in Hilbert spaces and applications, Pure Appl. Funct. Anal. 3 (2018), 349-369. [34] A. J. Zaslavski, Approximate Solutions of Common Fixed Point Problems, Springer Optimization and its Applications, Springer, Cham, 2016. [35] A. J. Zaslavski, Algorithms for Solving Common Fixed Point Problems, Springer Optimization and its Applications, Springer, Cham, 2018.
|