Keywords and phrases: heat transfer coefficient, temperature oscillation method, Reynolds number.
Received: October 16, 2022; Accepted: November 28, 2022; Published: December 15, 2022
How to cite this article: S. Solnař, M. Dostál, J. Moravec and T. Vampola, 3D visualization of local heat transfer coefficients on aircraft heat exchanger, JP Journal of Heat and Mass Transfer 30 (2022), 183-203. http://dx.doi.org/10.17654/0973576322063
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. H. Cummings and A. S. West, Heat transfer data for kettles with jackets and coil, Industrial and Engineering Chemistry 69 (1950), 2303-2313. [2] J. C. Han and J. S. Park, Developing heat transfer in rectangular channels with rib turbulators, International Journal of Heat and Mass Transfer 31(1) (1988), 183-195. [3] A. Herchang, J. J. Yuh and Y. Jer-Nan, Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography, International Journal of Heat and Mass Transfer 45 (2002), 4069-4078. [4] P. E. Poinsatte, G. J. V. Fossen, J. E. Newton and K. J. Witt, Heat transfer measurements from a smooth NACA 0012 airfoil, Journal of Aircraft 28(12) (1992), 892-901. [5] C. Jainski, L. Lu, V. Sick and A. Dreizler, Laser imaging investigation of transient heat transfer processes in turbulent nitrogen jets impinging on a heated wall, International Journal of Heat and Mass Transfer 74 (2014), 101-112. [6] A. S. Nebuchinov, Y. A. Lozhkin, A. V. Bilsky and D. M. Markovich, Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet, Experimental Thermal and Fluid Science 80 (2017), 139-146. [7] S. J. Yi, M. Kim, D. Kim, H. D. Kim and K. C. Kim, Transient temperature field and heat transfer measurement of oblique jet impingement by thermographic phosphor, International Journal of Heat and Mass Transfer 102 (2016), 691-702. [8] M. Věříšová, M. Dostál, T. Jirout and K. Petera, Heat transfer in a jacketed agitated vessel equipped with multistage impellers, Chemical Papers 69(20) (2015), 690-697. [9] M. Lehner, D. Mewes, U. Dinglreiter and R. Tauscher, Applied Optical Measurements, Springer, 1999. [10] M. Cudak and J. Karcz, Distribution of local heat transfer coefficient values in the wall region of an agitated vessel, Chemical Papers 62(1) (2008), 92-99. [11] K. Petera, M. Věříšová, M. Dostál and T. Jirout, Heat transfer at the bottom of a cylindrical vessel impinged by a swirling flow from an impeller in a draft tube, Chem. Biochem. Eng. 31(3) (2017), 343-352. [12] F. Saeed, Numerical simulation of surface heat transfer from an array of hot-air jets, Journal of Aircraft 45(2) (2008), 700-714. [13] V. G. Gkoutzamanis, S. E. Tsentis, O. S. V. Mylonas, A. I. Kalfas, K. Kyprianidis, P. Tsirikoglou and M. Sielemann, Thermal management system considerations for a hybrid-electric commuter aircraft, Journal of Thermophysics and Heat Transfer 36 (2022), 650-666. [14] H. Yuan, Z. Wang, G. Hu and Q. Gao, Self-excited counterflow disturbance and heat transfer characteristics of Al2O3-water nanofluids, Journal of Thermophysics and Heat Transfer 36 (2021), 1-10. [15] M. Wandelt and W. Roetzel, Lockin thermography as a measurement technique in heat transfer, Quantitative Infra-Red Thermography 96 (1997), 189-194. [16] H. Glaser, Der Warmeubergang in Regeneratoren, Z. VDI, Beiheft Verfahrenstechnik 4 (1938), 112-125. [17] W. U. Langhans, Warmeubergang und Druckverlust in Regeneratoren mit rostgitterartiger Speichermasse, Arch. Eisenhuttenw 33 (1952), 347-353 and 441-451. [18] W. Kast, Messung des Warmeuberganges in Haufwerken mit Hilfe einer temperaturmodulierten Stormung, Allg. Warmetech 12(6) (1965), 119-125. [19] H. Matulla and A. F. Orlicek, Bestimmung der Warmeubergangskoeffizienten in einem Dopplerohrwarmeaustauscher durch Frequenzganganalyse, Chemi-Ing. Techn. 43(20) (1971), 1127-1130. [20] J. H. Stang and J. E. Bush, The periodic method for testing compact heat exchanger surfaces, J. Eng. Power 96(2) (1974), 87-91. [21] W. Roetzel, Measurement of heat transfer coefficients in tubes by temperature oscillation analysis, Chem. Eng. Technol. 12 (1989), 379-387. [22] S. Freund, Local heat transfer coefficients measured with temperature oscillation IR thermography, Ph. D. Thesis, Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, 2008. [23] S. Freund, A. G. Pautsch, T. A. Shedd and S. Kabelac, Local heat transfer coefficients in spray cooling systems measured with temperature oscillation IR thermography, International Journal of Heat and Mass Transfer 50(10) (2007), 1953-1962. [24] S. Solnař, M. Dostál and T. Jirout, Local values of heat transfer coefficient at the bottom of an agitated vessel measured with TOIRT method, Proceedings of the 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2019. [25] S. Solnař, M. Dostál, K. Petera and T. Jirout, Application of the temperature oscillation method in heat transfer measurements at the wall of an agitated vessel, Acta Polytechnica 58(2) (2018), 144-154. [26] S. Solnař and M. Dostál, Thermal enhancement factors for 3D printed elements in square tube, Heat and Mass Transfer 58(4) (2022), 1-11. [27] S. Freund and S. Kabelac, Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD, International Journal of Heat and Mass Transfer 53(20) (2010), 3764-3781. [28] H. Long, A. A. Lord, D. T. Gethin and B. J. Roylance, Operating temperatures of oil-lubricated medium-speed gears: numerical models and experimental results, Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering 217 (2003), 87-106.
|