Keywords and phrases: nanofluid, non-linear stretching parameter, Keller-Box method, chemical reaction, Soret and Dufour.
Received: July 27, 2022; Revised: August 2, 2022; Accepted: September 16, 2022; Published: December 15, 2022
How to cite this article: B. Narsimha Reddy, P. Maddileti and B. Shashidar Reddy, Nanofluid flow on non-linearly stretching surface influenced by the combined effects of Soret and Dufour with chemical reaction, JP Journal of Heat and Mass Transfer 30 (2022), 161-182. http://dx.doi.org/10.17654/0973576322062
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Int. Mech. Eng. Congress, San Francisco, USA, ASME, FED, 231/MD, Vol. 66, 1995, pp. 99-105. [2] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (2018), 240-250. doi:10.1115/1.2150834. [3] A. Govindarajan, Radiative fluid flow of a nanofluid over an inclined plate with non-uniform surface temperature, Journal of Physics: IOP Publishing 1000(1) (2018), 012173. doi:10.1088/1742-6596/1000/1/012173. [4] D. A. Nield and A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (2009), 5792-5795. doi:10.1016/j.ijheatmasstransfer.2009.07.024. [5] S. Ghahremanian, A. Abbassi, Z. Mansoori and D. Toghraie, Investigation on the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena, Journal of Molecular Liquids 311(9) (2020), Article: 113310. doi:10.1016/j.molliq.2020.113310. [6] K. Cacua, K. Buitrago-Sierra, R. Pabon, E. Gallego, A. Zapata and C. B. Herrera, Nanofluids stability effect on a thermosyphon thermal performance, Int. J. Therm. Sci. 153 (2020), Article ID: 106347. [7] Muhammad Waqas, Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding–contracting cylinder, Int. J. Numer. Meth. Heat Fluid Flow 30(4) (2020), 2193-2205. [8] M. M. Bhatti, S. R. Mishra, T. Abbas and M. M. Rashidi, A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects, Neural Comput. Appl. 30 (2018), 1237-1249. [9] B. Souayeh, M. G. Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji and I. M. Alarifi, Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle, Journal of Molecular Liquids 284 (2019), 163-174. doi:10.1016/j.molliq.2019.03.151. [10] N. Makulati, A. Kasaeipoor and M. M. Rashidi, Numerical study of natural convection of a water-alumina nanofluid in inclined C-shaped enclosures under the effect of magnetic field, Adv. Powder Technol. 27 (2016), 661-672. doi:10.1016/j.apt.2016.02.020. [11] B. C. Sakiadis, Boundary layer behavior on continuous solid surfaces: I. Boundary layer equations for two dimensional and axisymmetric flows, AIChE J. 7 (1961), 26-28. [12] B. C. Sakiadis, Boundary layer behavior on continuous solid surfaces: II. Boundary layer on a continuous flat surface, AIChE J. 7 (1961), 221-225. [13] R. Cortell, Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl. Math. Comput. 184 (2007), 864-873. [14] R. Cortell, Effects of viscous dissipation and radiation on the thermal boundary layer over a non-linearly stretching sheet, Phys. Lett. A 372 (2008), 631-636. [15] M. M. Nandeppanavar, K. Vajravelu, M. S. Abel and C. Ng, Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature, Int. J. Heat Mass Transf. 54 (2011), 4960-4965. [16] K. Vajravelu and J. R. Cannon, Fluid flow over a nonlinearly stretching sheet, Appl. Math. Comput. 181 (2006), 609-618. [17] K. V. Prasad, K. Vajravelu and P. S. Datti, Mixed convection heat transfer over a non-linear stretching surface with variable fluid properties, Int. J. Non-Linear Mech. 45 (2010), 320-330. [18] N. Afzal, Momentum and thermal boundary layers over a two dimensional or axisymmetric non-linear stretching surface in a stationary fluid, Int. J. Heat Mass Transf. 53 (2010), 540-547. [19] M. Waqas, A study of magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface, International Communications in Heat and Mass Transfer 126 (2021), 105262. [20] S. P. Anjalidevi and R. Kandasamy, Effects of chemical reaction heat and mass transfer on laminar flow along a semi-infinite horizontal plate, Heat and Mass Transfer 35 (1999), 465-467. [21] P. K. Kameswaran, M. Narayana, P. Sibanda and P. V. S. N. Murthy, Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects, Int. J. Heat Mass Transf. 55 (2012), 7587-7595. [22] Muhammad Nasir, Muhammad Waqas, O. Anwar Beg, D. Baba Basha, N. Zamri, H. J. Leonard and IIyas Khan, Chemically reactive Maxwell nanoliquid flow by a stretching surface in the frames of Newtonian heating, nonlinear convection and radiative flux: nanopolymer flow processing simulation, Nanotechnology Reviews 11 (2022), 1291-1306. [23] O. D. Makinde, On MHD boundary-layer flow and mass transfer past a vertical plate in a porous medium with constant heat flux, Int. J. Numer. Meth. Heat Fluid Flow 19 (2009), 546-554. [24] Rosmila Abdul-Kahar, R. Kandasamy and Muhaimin, Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation, Comp. Fluids 52 (2011), 15-21. [25] B. J. Gireesha and N. G. Rudraswamy, Chemical reaction on MHD flow and heat transfer of a nanofluid near the stagnation point over a permeable stretching surface with non-uniform heat source/sink, International Journal of Engineering, Science and Technology 6(5) (2014), 13-25. [26] T. Hayat, M. Zubair, M. Waqas, A. Alsaedi and M. Ayub, On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory, Results in Physics 7 (2017), 99-106. doi:10.1016/j.rinp.2016.12.003. [27] T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, Chemically reactive flow of third grade fluid by an exponentially convected stretching sheet, Journal of Molecular Liquids 223 (2016), 853-860. [28] H. Sardar, L. Ahmad, M. Khan and A. S. Alshomrani, Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects, Int. J. Heat Mass Transf. 137 (2019), 809-822. [29] A. Posteinicu, Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects, Int. J. Heat Mass Transf. 47 (2004), 1457-1472. [30] S. Jagadha, Gopal Degavath and N. Kishan, Soret and Dufour effects of electrical MHD nanofluid with higher order chemical reaction, Test Engineering and Management 82 (2020), 2250-2259. [31] Ghulam Rasool, Anum Shafiq and Dumitru Baleanu, Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy- Forchheimer flow of nanofluids, Symmetry 12 (2020), 1-19, Article ID: 1421. [32] K. Rafique, M. I. Anwar, M. Misiran, I. Khan, S. O. Alharbi, P. Thounthong and K. S. Nisar, Numerical solution of Casson nanofluid flow over a non-linear inclined surface with Soret and Dufour effects by Keller-Box method, Front. Phys. 7 (2019), Article ID: 139. doi:10.3389/fphy.2019.00139. [33] M. I. Anwar, S. Shafi, T. Hayat, S. A. Shehzad and M. Z. Salleh, Numerical study for MHD stagnation-point flow of a micro polar nanofluid towards a stretching sheet, J. Braz. Soc. Mech. Sci. Eng. 39 (2017), 89-100. doi:10.1007/s40430-016-0610-y. [34] F. Mabood, W. A. Khan and A. I. M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: a numerical study, Journal of Magnetism and Magnetic Materials 374 (2015), 569-576.
|