Keywords and phrases: DBD, power balance, electron density, micro-discharge, Lissajous curve.
Received: September 7, 2022; Accepted: November 5, 2022; Published: December 15, 2022
How to cite this article: A. K. Shah, R. Shrestha, R. L. Sah, J. J. Nakarmi and L. N. Mishra, Experimental study of dielectric barrier discharge in an atmospheric air pressure and its electrical characterization, JP Journal of Heat and Mass Transfer 30 (2022), 135-150. http://dx.doi.org/10.17654/0973576322060
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Hojnik, M. Modic, N. Yuan, G. Filipič, U. Cvelbar and J. L. Walsh, Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air, Plasma Environ. Sci. Technol. 53 (2019), 1893-1904. [2] L. Boeckmann, M. Schäfer, B. Thoralf, M. L. Semmler, O. Jung, G. Ojak, T. Fischer, K. Peters, N. Barbara, M. H. Brigitte, S. Christian, B. Sander and S. Emmert, Cold atmospheric pressure plasma in wound healing and cancer treatment, Appl. Sci. 10 (2020), 6898. [3] P. Zubor, Y. Wang, A. Liskova, M. Samec, Lenka Koklesova Zuzana Dankova, Anne Dørum, Karol Kajo, Dana Dvorska, Vincent Lucansky, Bibiana Malicherova, Ivana Kasubova, Jan Bujnak, Milos Mlyncek, Carlos Alberto Dussan, Peter Kubatka, Dietrich Büsselberg and Olga Golubnitschaja, Cold atmospheric pressure plasma (CAP) as a new tool for the management of vulva cancer and vulvar premalignant lesions in gynaecological oncology, Int. J. Mol. Sci. 21 (2020), 7988. [4] R. Shrestha, D. P. Subedi, T. Niraula, M. Pokharel, P. Pandey, S. Bhattarai, J. P. Gurung and V. K. Shrivastava, Effect of cold atmospheric pressure argon plasma jet on wound healing, Global Scientific Journals 8 (2020), 1080-1093. [5] J. Tinneke, M. Rino, D. G. Nathalie, D. Peter and L. Christophe, Plasma surface modification of biomedical polymers: influence on cell-material interaction, Plasma Chem. Plasma Process 32 (2012), 1039-1073. [6] G. Y. Frederick, D. G. Diana, E. S. Adele and J. M. Leroy, Plasma-polymerized films as moisture barriers for alkali halide optics, Thin Solid Films 84 (1981), 427-434. [7] P. Rajasekaran, P. Mertmann, N. Bibinov, D. Wandke, V. Wolfgang and P. Awakowicz, Filamentary and homogeneous modes of dielectric barrier discharge (DBD) in air: investigation through plasma characterization and simulation of surface irradiation, Plasma Process. Polym. 7 (2010), 665-675. [8] C. Pieter, M. Rino and D. G. Nathalie, Plasma modified textiles for biomedical applications, Chapter -5, Open Access Book, Advances in Bioengineering. http://dx.doi.org/10.5772/59770 [9] K. H. Kale and A. N. Desai, Atmospheric pressure plasma treatment of textiles using non-polymerising gases, Indian Journal of Fibre and Textile Research 36 (2011), 289-299. [10] Chang-E. Zhou, Chi-Wai Kan, P. M. Jukka and James Kit-Hon Tsoi, Regenerable antibacterial cotton fabric by plasma treatment with dimethylhydantoin: antibacterial activity against S. aureus, Coatings 7(1) (2017), 11. Doi: 10.3390/coatings7010011 [11] E. F. Castro Vidaurre, C. A. Achete, F. Gallo, D. Garciac, R. Simão and A. C. Habert, Surface modification of polymeric materials by plasma treatment materials research, Materials Research 5(1) (2002), 37-41. [12] R. Shrestha and D. P. Subedi, Experimental study of an atmospheric pressure dielectric barrier discharge and pet surface modification, Int. Journal of Engineering Research and Applications (Part-6) 5(5) (2015), 41-45. [13] T. A. O. Xiaoping, L. U. Rongde and L. I. Hui, Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source, Plasma Science and Technology 14(8) (2012), 723-727. [14] X. M. Zhu, W. Cong-Che and Y. K. Pu, Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma, J. Phy. D: Appl. Phys. 41 (2008), 1-6. [15] N. Balcon, A. Aanesland and R. Boswell, Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon, Plasma Source Science Technol. 16 (2007), 217-225. [16] Z. Buntat, J. E. Harry and I. R. Smith, Generation of a homogeneous glow discharge in air at atmospheric pressure, Electrika 9 (2007), 60-65. [17] M. Kuchenbecker, N. Bibinov, A. Kaemlimg, D. Wandke, P. Awakowicz and W. Viöl, Characterization of DBD plasma source for biomedical applications, Journal of Physics D: Applied Physics 42 (2009), 1-10. [18] P. Rajasekaran, C. Opländer, D. Hoffmeister, N. Bibinov, V. K. Suschek, D. Wandke and P. Awakowicz, Characterization of dielectric barrier discharge (DBD) on mouse and histological evaluation of the plasma-treated tissue, Plasma Process. Polym. 8 (2011), 246-255. [19] R. Junxia, Li Caixia, M. Dong, L. Haiyun and L. Xiaowei, Homogeneous dielectric barrier discharges in atmospheric air and its influencing factor, Phys. Plasmas 25 (2018), 1-5. [20] A. Yehia, Consumption of the electric power inside silent discharge reactors, Phys. Plasmas 22 (2015), 1-8. [21] A. Eid, K. Takashima and A. Mizuno, Experimental and simulation investigations of DBD plasma reactor at normal environmental conditions, IEEE Transactions on Industry Applications 50(6) (2014), 4221-4227. [22] A. Yehia and A. Mizuno, Calculation of the electrical power dissipated in silent discharge reactors, Journal of Applied Physics 98 (2005), 1-7. [23] A. Yehia, The electrical characteristics of the dielectric barrier discharges, Phys. Plasmas 23 (2016), 1-11.
|