Keywords and phrases: online gradient method, pi-sigma neural networks, double regularization, L2 regularization.
Received: September 8, 2022; Accepted: October 29, 2022; Published: December 6, 2022
How to cite this article: Khidir Shaib Mohamed, Osman Abdalla Adam Osman, Khalid Makin, Mohammed Nour A. Rabih and D. S. Muntasir Suhail, Training pi-sigma neural network using double regularization, Far East Journal of Electronics and Communications 26 (2022), 1-16. http://dx.doi.org/10.17654/0973700622002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
Refernces:
[1] Y. Shin and J. Ghosh, The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation, IJCNN-91-Seattle International Joint Conference on Neural Networks, IEEE, Vol. 1, 1991, pp. 13-18. [2] M. Heywood and P. Noakes, A framework for improved training of sigma-Pi networks, IEEE Transactions on Neural Networks 6(4) (1995), 893-903. [3] S. Dehuri and S. B. Cho, Evolutionarily optimized features in functional link neural network for classification, Expert Systems with Applications 37(6) (2010), 4379-4391. https://doi.org/10.1016/j.eswa.2009.11.090. [4] C. K. Li, A sigma-pi-sigma neural network (SPSNN), Neural Processing Letters 17(1) (2003), 1-19. https://doi.org/10.1023/A:1022967523886. [5] E. Akdeniz, E. Egrioglu, E. Bas and U. Yolcu, An ARMA type pi-sigma artificial neural network for nonlinear time series forecasting, Journal of Artificial Intelligence and Soft Computing Research 8 (2018), 121-132. https://doi.org/10.1515/jaiscr-2018-0009. [6] N. Panda and S. K. Majhi, Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network, Computational Intelligence 36(1) (2020), 320-350. https://doi.org/10.1111/coin.12272. [7] N. A. Husaini, R. Ghazali, N. M. Nawi and L. H. Ismail, Pi-sigma neural network for temperature forecasting in Batu Pahat, International Conference on Software Engineering and Computer Systems, Springer, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-22191-0_46. [8] E. Bas, E. Egrioglu and E. Kolemen, A novel intuitionistic fuzzy time series method based on bootstrapped combined pi-sigma artificial neural network, Engineering Applications of Artificial Intelligence 114 (2022), 105030. https://doi.org/10.1016/j.engappai.2022.105030. [9] A. Krogh and J. Hertz, A simple weight decay can improve generalization, Advances in Neural Information Processing Systems, 1991, pp. 950-957. [10] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, Generalization by weight-elimination applied to currency exchange rate prediction, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks, IEEE, 1991, pp. 2374-2379. doi: 10.1109/IJCNN.1991.155287. [11] J. Moody and T. Rögnvaldsson, Smoothing regularizers for projective basis function networks, Advances in Neural Information Processing Systems, 1996, pp. 585-591. [12] E. Phaisangittisagul, An analysis of the regularization between L2 and dropout in single hidden layer neural network, 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), IEEE, 2016, pp. 174-179. doi: 10.1109/ISMS.2016.14. [13] Y. Liu, D. Yang and C. Zhang, Relaxed conditions for convergence analysis of online back-propagation algorithm with L2 regularizer for sigma-Pi-sigma neural network, Neurocomputing 272 (2018), 163-169. https://doi.org/10.1016/j.neucom.2017.06.057. [14] Z. Wei, Q. Li, J. Wei and W. Bian, Neural network for a class of sparse optimization with L0-regularization, Neural Networks 151 (2022), 211-221. https://doi.org/10.1016/j.neunet.2022.03.033. [15] Y. Zhang, Y. Shi, L. Ma, J. Wu, L. Wang and H. Hong, Blind natural image deblurring with edge preservation based on L0-regularized gradient prior, Optik 225 (2021), 165735. https://doi.org/10.1016/j.ijleo.2020.165735. [16] F. Wu and W. Bian, Accelerated iterative hard thresholding algorithm for $$ l_0 $$ l0 regularized regression problem, J. Global Optim. 76(4) (2021), 819-840. https://doi.org/10.1007/s10898-019-00826-6. [17] J. Kuha, AIC and BIC: comparisons of assumptions and performance, Sociol. Methods Res. 33(2) (2004), 188-229. https://doi.org/10.1177/0049124103262065. [18] S. Mc Loone and G. Irwin, Improving neural network training solutions using regularization, Neurocomputing 37(1-4) (2001), 71-90. https://doi.org/10.1016/S0925-2312(00)00314-3. [19] M. Schmidt, G. Fung and R. Rosales, Fast optimization methods for l1 regularization: a comparative study and two new approaches, European Conference on Machine Learning, Springer, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-74958-5_28. [20] Z. Xu, H. Zhang, Y. Wang, X. Chang and Y. Liang, L1/2 regularization, Science China Information Sciences 53(6) (2010), 1159-1169. https://doi.org/10.1007/s11432-010-0090-0. [21] Y. Liang, H. Chai, X. Y. Liu, Z. B. Xu, H. Zhang and K. S. Leung, Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization, BMC Medical Genomics 9(1) (2016), 1-11. https://doi.org/10.1186/s12920-016-0169-6. [22] H. K. Jiang and Y. Liang, The L1/2 regularization network Cox model for analysis of genomic data, Computers in Biology and Medicine 100 (2018), 203-208. https://doi.org/10.1016/j.compbiomed.2018.07.009. [23] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol. 67(2) (2005), 301-320. https://www.jstor.org/stable/3647580. [24] L. Wang, J. Zhu and H. Zou, The doubly regularized support vector machine, Statist. Sinica 16 (2006), 589-615. https://www.jstor.org/stable/24307560. [25] W. Shen, J. Wang and S. Ma, Doubly regularized portfolio with risk minimization, Twenty-eighth AAAI Conference on Artificial Intelligence, 2014. https://doi.org/10.1609/aaai.v28i1.8906. [26] P. Milanez-Almeida, A. J. Martins, R. N. Germain and J. S. Tsang, Cancer prognosis with shallow tumor RNA sequencing, Nature Medicine 26(2) (2020), 188-192. https://doi.org/10.1038/s41591-019-0729-3
|