Keywords and phrases: nonlinear PDE, Cauchy problem, variational problems, elliptic operators.
Received: August 16, 2022; Accepted: September 29, 2022; Published: November 23, 2022
How to cite this article: B. Bella, I. Ly and A. Ouedraogo, On the Cauchy problem for the p‑Laplace operator, Universal Journal of Mathematics and Mathematical Sciences 17 (2022), 67-82. http://dx.doi.org/10.17654/2277141722012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. Brezis, Analyse fonctionelle, Theorie et application, Masson, Paris, 1983. [2] J. Cringanu, The p-Laplacian on Sobolev spaces Studia Univ. “Babeş-Bolyai”, Mathematica L 1 (2005), 25-31. [3] B. Dacorogna, Introduction to the Calculus of Variations, Imperial College Press, London, 2004. [4] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. I., Elliptic Equations Research Notes in Mathematics, Vol. 106, Pitman, Boston, MA, 1985. [5] C. Ebmeyer, Mixed boundary value problems for nonlinear elliptic systems in n dimensional Lipschitzian domains, Zeitschrift für Analysis und ihre Anwendungen 18(3) (1999), 539-555. [6] C. Ebmeyer, Mixed boundary value problems for nonlinear elliptic systems with p-structure in polyhedral domains, Math. Nachr. 236 (2002), 91-108. [7] Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998. [8] V. A. Kozlov, V. G. Maz’ya and A. V. Fomin, An iterative method for solving the Cauchy problem for elliptic equations, Comput. Maths. Math. Phys. 31(1) (1991), 45-52. [9] A. V. Kryanev, An iterative method for solving ill-posed problems, Comput. Maths. Math. Phys. 14(1) (1974), 25-35. [10] P. Kügler and A. Leitao, Mean value iterations for nonlinear elliptic Cauchy problems, Numerische Mathematik 96 (2003), 269-293. [11] I. Ly, An iterative method for solving the Cauchy problem for the p-Laplace operator, Complex Variables and Elliptic Equations 55(11) (2010), 1079-1088. [12] I. Ly and N. Tarkhanov, The Cauchy problem for nonlinear elliptic equations, Nonlinear Analysis 70(7) (2009), 2494-2505. [13] V. P. Maslov, The existence of a solution of an ill-posed problem is equivalent to the convergence of a regularization process, Uspekhi Mat. Nauk 23(3) (1968), 183-184. [14] Charles B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, Heidelberg, 1966. [15] A. J. Pryde, Second order elliptic equations with mixed boundary conditions, J. Math. Anal. Appl. 80(1) (1981), 203-244. [16] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995. [17] M. Taylor, Partial Differential Operators III, Nonlinear Equations, Springer-Verlag, Berlin, 1996. [18] L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Addison Wesley Longman Limited, 1996. [19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin and New York, 1965. [20] S. Zaremba, Sur un problème mixte relatif à l’équation de Laplace, Bull. Intern. Acad. Sci. Cracovie, Classe des Sciences Mathématiques et Naturelles, Série A, (1910), 313-344. [21] S. Zaremba, Sur un problème toujours possible comprenant á titre de cas particuliers, le probème de Dirichlet et celui de Neumann, J. Math. Pure Appl. 6 (1927), 127-163.
|