Keywords and phrases: fixed point theorem, Riemann-Liouville fractional derivative, hybrid initial value problem.
Received: August 8, 2022; Revised: September 24, 2022; Accepted: October 14, 2022; Published: November 9, 2022
How to cite this article: Sahar Mohammad A. Abusalim, Solutions of fractional hybrid differential equations via fixed point theorems and Picard approximations, Advances in Differential Equations and Control Processes 29 (2022), 65-100. http://dx.doi.org/10.17654/0974324322034
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] H. Lu, S. Sun, D. Yang and H. Teng, Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl. 23 (2013), 1-16. [2] R. P. Agarwal, V. Lakshmikantam and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. 72 (2010), 2859-2862. [3] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus: models and numerical methods, Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 2012. [4] T. Qiu and Z. Bai, Existence of positive solution for singular fractional equations, Electron. J. Differential Equations 146 (2008), 1-9. [5] J. Sabatier, O. P. Agarwal and J. A. T. Machado, Advances in fractional calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, 2007. [6] H. Mohammadi, S. Rezapour and A. Jajarmi, On the fractional SIRD mathematical model and control for the transmission of COVID-19: the first and the second waves of the disease in Iran and Japan, ISA Transactions 124 (2022), 103-114. [7] J. Alzabut, A. Selvam, V. Dhakshinamoorthy, H. Mohammadi and S. Rezapour, On chaos of discrete time fractional order host-immune-tumor cells interaction model, J. Appl. Math. Comput. (2022), 1-26. https://doi.org/10.1007/s12190-022-01715-0. [8] S. Rezapour and H. Mohammadi, Application of fractional order differential equations in modeling viral disease transmission, Mathematical Analysis of Infectious Diseases (2022), 211-230. https://doi.org/10.1016/B978-0-32-390504-6.00017-6. [9] S. Rezapour and H. Mohammadi, Some fractional mathematical models of the COVID-19 outbreak, Modeling, Control and Drug Development for COVID-19 Outbreak Prevention, 2021, pp. 957-1021. [10] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. [11] K. Diethelm and N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput. 154 (2004), 621-640. [12] B. C. Dhage, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, Differ. Equ. Appl. 5(2) (2013), 155-184. [13] Jing Ren and Chengbo Zhai, Unique solutions for fractional q-difference boundary value problems via a fixed point method, Bull. Malays. Math. Sci. Soc. 42 (2019), 1507-1521. [14] Yong Zhou, Bashir Ahmad and Ahmed Alsaedi, Existence of nonoscillatory solutions for fractional functional differential equations, Bull. Malays. Math. Sci. Soc. 42 (2019), 751-766. [15] B. C. Dhage and V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal. Real World Appl. 4 (2010), 414-424. [16] B. C. Dhage and N. S. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math. 44(2) (2013), 171-186. [17] Yufeng Xu, Fractional boundary value problems with integral and anti-periodic boundary conditions, Bull. Malays. Math. Sci. Soc. 39 (2016), 571-587. [18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 1993. [19] F. Shaddad, M. S. Md Noorani, S. M. Alsulami and H. Akhadkulov, Coupled point results in partially ordered metric spaces without compatibility, Fixed Point Theory Appl. 2014 (2014), 204. https://doi.org/10.1186/1687-1812-2014-204. [20] Habibulla Akhadkulov, Rahma Zuhra, Azizan Bin Saaban, Fawzia Shaddad and Sokhobiddin Akhatkulov, The existence of -fixed point for the multidimensional nonlinear mappings satisfying -weak contractive conditions, Sains Malaysiana 46(8) (2017), 1341-1346. http://dx.doi.org/10.17576/jsm-2017-4608-21. [21] Habibulla Akhadkulov, Azizan Saaban, Sokhobiddin Akhatkulov and Fahad Alsharari, Multidimensional fixed-point theorems and applications, AIP Conference Proceedings 1870, 2017, 020002. https://doi.org/10.1063/1.4995825. [22] H. Akhadkulov, A. B. Saaban, F. M. Alipiah and A. F. Jameel, Estimate for Picard iterations of a Hermitian matrix operator, AIP Conf. Proc. 1905 (2017), 030004. https://doi.org/10.1063/1.5012150. [23] H. Akhadkulov, S. M. Noorani, A. B. Saaban, F. M. Alipiah and H. Alsamir, Notes on multidimensional fixed-point theorems, Demonstratio Math. 50 (2017), 360-374. https://doi.org/10.1515/dema-2017-0033. [24] H. Akhadkulov, A. B. Saaban, S. Akhatkulov, F. Alsharari and F. M. Alipiah, Applications of multidimensional fixed point theorems to a nonlinear integral equation, Int. J. Pure Appl. Math. 117(4) (2017), 621-630. DOI: 10.12732/ijpam.v117i4.7. [25] H. Akhadkulov, A. B. Saaban, M. F. Alipiah and A. F. Jameel, On applications of multidimensional fixed point theorems, Nonlinear Funct. Anal. Appl. 23(3) (2018), 585-593. [26] H. Akhadkulov, F. Alsharari and T. Y. Ying, Applications of Krasnoselskii-Dhage type fixed-point theorems to fractional hybrid differential equations, Tamkang Journal of Mathematics 52(2) (2021), 281-292. DOI: https://doi.org/10.5556/j.tkjm.52.2021.3330.
|