Keywords and phrases: Adomian decomposition method (ADM), approximate Lagrange multipliers, exact Lagrange multipliers, variational iteration method (VIM).
Received: July 11, 2022; Received: August 29, 2022; Accepted: September 15, 2022; Published: October 21, 2022
How to cite this article: Joseph Bonazebi Yindoula, Yanick Alain Servais Wellot, Gires Dimitri Nkaya and Deryl Nathan Bonazebi Yindoula, A comparative study of Adomian decomposition method and variational iteration method, Universal Journal of Mathematics and Mathematical Sciences 17 (2022), 1-30. http://dx.doi.org/10.17654/2277141722009
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] K. Abbaoui, Les fondements de la méthode décompositionnelle d’Adomian et application à la résolution de problèmes issus de la biologie et de la medicine, Thèse de Doctorat de l’Université Paris VI, 1995. [2] N. Ngarhasta, B. Some, K. Abbaoui and Y. Cherruault, New numerical study of Adomian method applied to a diffusion model, Kybernetes 31(1) (2002), 61-75. [3] Joseph Bonazebi Yindoula, Gabriel Bissanga, Pare Youssouf, Francis Bas-Sono and Blaise Some, Application of the Adomian Decomposition Method (ADM) and the decomposition Laplace-Adomian method to solving some equation of the models of water pollution, Advances in Dynamical Systems and Applications (ADSA) 10(1) (2015), 1-11. [4] S. Abbasbandy, A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials, J. Comput. Appl. Math. 207 (2007), 59-63. [5] A. Mehmood, F. J. Awan and S. T. Mohyud-Din, Comparison of Lagrange multiplier for non-linear BVPs, International Journal of Modern Mathematical Science 5(3) (2003), 156-165. [6] A. Wazwaz, The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients, Cent. Eur. J. Eng. 4(1) (2014), 64-71. [7] A. Wazwaz, Linear and Nonlinear Differential Equations, Methods and Applications, Higher Education Press, Beijing, Springer-Verleg, Heidelberg, 2011. [8] G. Wu, Challenge in the variational iteration method - a new approach to identification of the Lagrange multipliers, Journal of King Saud University Science 25 (2013), 175-178. [9] H. K. Dass, Advance engineering mathematics for the students of M.E, B.E and other Engineering Examination, S. Chand & Company Ltd, Ram Nagar, New Delhi, 2008. [10] N. H. Sweilam, Variational iteration method for solving cubic nonlinear Schrödinger equation, J. Comput. Appl. Math. 207 (2007), 155-163. [11] N. Bildik and A. Konuralp, Two-dimensional differential transform method, Adomian decomposition method, and variational iteration method for partial differential equations, Int. J. Comput. Math. 83 (2006), 973-987. [12] S. Abbasbandy, Numerical solutions of nonlinear Klein-Gordon equation by variational iteration method, Internat. J. Numer. Mech. Eng. 70 (2007), 876-881. [13] M. A. Abdou and A. A. Soliman, New applications of variational iteration method, Phys. D 211(1-2) (2005), 1-8. [14] J. H. He, Some asymptotic methods for strongly nonlinear equation, Int. J. Mod. Phys. 20(10) (2006), 1144-1199. [15] M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in nonlinear mathematical physics, Variational Method in the Mechanics of Solids, S. Nemat-Naseer, ed., Pergamon Press, New York, 1978, pp. 156-162. [16] S. T. Mohyud-Din, Modified variational iteration method for integro-differential equations and coupled systems, Z. Naturforsch. 65a (2010), 277-284. [17] J. I. Ramos, On the variational iteration method and other iterative techniques for nonlinear differential equations, Appl. Math. Comput. 199 (2008), 39-69.
|