Keywords and phrases: coronavirus, non-standard finite difference scheme, stability analysis, parameter estimation, method of least square, numerical simulation.
Received: July 22, 2022; Accepted: September 29, 2022; Published: October 17, 2022
How to cite this article: Trupti Barve, Sandeep Kumar Tiwari and Pradeep Porwal, Transmission dynamics of coronavirus disease during the second wave: a mathematical study in the holy city Ujjain, Far East Journal of Dynamical Systems 35 (2022), 23-44. http://dx.doi.org/10.17654/0972111822008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. J. Arenas, G. G. Parra, J. J. Naranjo, M. Cogollo and N De La Espriella, Mathematical analysis and numerical solution of a model of HIV with a discrete time delay, Mathematics 9(3) (2021), 257. http://doi.org/10.3390/math9030257. [2] A. J. Arenas, G. G. Parra and B. M. C. Charpentier, A nonstandard numerical scheme of predictor-corrector type for epidemic models, Comput. Math. Appl. 59(12) (2010), 3740-3749. https://doi.org/10.1016/j.camwa.2010.04.006. [3] Ask Apollo, New COVID-19 Symptoms to Look Out For, accessed 03 June 2022. https://healthlibrary.askapollo.com/new-covid-19-symptoms-to-look-out-for/. [4] S. Bentout, A. Chekroun and T. Kuniya, Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria, AIMS Public Health 7(2) (2020), 306-318. https://doi.org/10.3934/publichealth.2020026. [5] H. W. Berhe, O. D. Makinde and D. M. Theuri, Parameter estimation and sensitivity analysis of dysentery, diarrhea epidemic model, J. Appl. Math. 2019, Article ID 8465747, 13 pp. [6] S. K. Biswas, J. K. Ghosh, S. Sarkar and U. Ghosh, COVID-19 pandemic in India: a mathematical model study, Nonlinear Dynam. 102 (2020), 537-553. https://doi.org/10.1007/s11071-020-05958-z. [7] F. Brauer, Compartmental models in epidemiology, Mathematical Epidemiology, F. Brauer, P. V. D. Driessche and J. Wu, eds., Mathematical Biosciences Subseries, Springer, 2008. 10.1007/978-3-540-78911-6. [8] L. Chandrakantha, Using excel solver in optimization problems, John Jay College of Criminal Justice of CUNY, access on 29/11/2021. https://www.researchgate.net/publication/267557388_USING_EXCEL_SOLVER_IN_OPTIMIZATION_PROBLEMS. [9] N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008), 1272-1296. [10] N. George, N. K. Tyagi and J. B. Prasad, COVID-19 pandemic and its average recovery time in Indian states, Clinical Epidemiology and Global Health 11 (2021), Article ID 100740. https://doi.org/10.1016/j.cegh.2021.100740. [11] J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface 2(4) (2005), 281-293. doi:10.1098/rsif.2005.0042. [12] Home Department, Government of Madhya Pradesh, CORONA (COVID-19) Related Important Order/Direction/Info, accessed 01 June 2022. http://home.mp.gov.in/en/coronacovid-19-related-important-orderdirectioninfo. [13] India Growing.com, Ujjain District Population of Rural and Urban, accessed 04 June 2022. https://www.indiagrowing.com/Madhya_Pradesh/Ujjain_District#:~: text=The%20district%20has%20an%20total,238%2C950%20are%20in%20rural%20area. [14] V. K. Jain, K. P. Iyengar and R. Vaishya, Differences between first wave and second wave of COVID-19 in India, Diabetes & Metabolic Syndrome: Clinical Research & Reviews 15(3) (2021), 1047-1048. https://doi.org/10.1016/j.dsx.2021.05.009. [15] A. Jha, Covid-19: urban hot spots drive surge, in greater need of jab scale-up, Hindustan Times, accessed 09 June 2022. https://www.hindustantimes.com/india-news/urban-hot-spots-drive-surge-in-greater-need-of-jab-scaleup-101617836285048.html [16] M. Kapoor and P. K. Panda, India’s second COVID wave: how is it different from the first wave? International Journal of Infectious Diseases 116 (2022), Supplement, Page S50. https://doi.org/10.1016/j.ijid.2021.12.121. [17] M. J. Keeling and P. Rohani, Modelling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. https://doi.org/10.2307/j.ctvcm4gk0. [18] W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society A 115(772) (1927), 700-721. http://doi.org/10.1098/rspa.1927.0118. [19] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich and J. Lessler, The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Annals of Internal Medicine 172(9) (2020), 577-582. https://doi.org/10.7326/M20-0504. [20] S. Liao and W. Yang, A nonstandard finite difference method applied to a mathematical cholera model, Bull. Korean Math. Soc. 54(6) (2017), 1893-1912. https://doi.org/10.4134/BKMS.b160240. [21] R. E. Mickens, Numerical integration of population models satisfying conservation laws: NSFD methods, Journal of Biological Dynamics 1(4) (2007), 427-436. https://doi.org/10.1080/17513750701605598. [22] National Informatics Centre (NIC), District Centres (Ujjain, Madhya Pradesh), Government of India, accessed on 21/12/2021. https://ujjain.nic.in/. [23] S. Olaniyi, O. S. Obabiyi, K. S. Okosun, A. T. Oladipo and S. O. Adewale, Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics, The European Physical Journal Plus 135(11) (2020), 938. https://doi.org/10.1080/17513750701605598. [24] D. A. Oluyori, A. G. C. Perez, V. A. Okhuese and M. Akram, Dynamics of an SEIRS COVID-19 epidemic model with saturated incidence and saturated treatment response: bifurcation analysis and simulations, AUPET Press Technical Journal of Daukeyev University 1(1) (2021), 39-56. https://doi.org/10.52542/tjdu.1.1.39-56. [25] D. Pal, D. Ghosh, P. K. Santra and G. S. Mahapatra, Mathematical analysis of a COVID-19 epidemic model by using data driven epidemiological parameters of diseases spread in India, Biophysics 67 (2020), 231-244. https://doi.org/10.1101/2020.04.25.20079111. [26] A. Rǎdulescu, C. Williams and K. Cavanagh, Management strategies in a SEIR- type model of COVID-19 community spread, Scientific Reports 10 (2020), Article number 21256. https://doi.org/10.1038/s41598-020-77628-4. [27] R. Ross, The prevention of malaria, Journal of the American Medical Association LVII(21) (1911), 1715-1716. 10.1001/jama.1911.04260110215034. [28] State Portal for COVID-19 Monitoring, Government of Madhya Pradesh ‘Health Bulletin’ [online] (accessed form 20/12/201-26/12/2021). http://sarthak.nhmmp.gov.in/covid/health-bulletin/. [29] A. Suryanto, W. M. Kusumawinahyu, I. Darti and I. Yanti, Dynamically consistent discrete epidemic model with modified saturated incidence rate, Comput. Appl. Math. 32(2) (2013), 373-383. https://doi.org/10.1007/S40314-013-0026-6. [30] TIMES OF INDIA, Coronavirus Symptoms: Signs and Symptoms that COVID-19 is Impacting Your Lungs, accessed 03 June 2021. https://timesofindia.indiatimes.com/life-style/health-fitness/health-news/coronavirus-symptoms-signs-and-symptoms-that-covid-19-is-impacting-your-lungs/photostory/82253279.cms. [31] V. Tiwari, N. Deyal and N. S. Bisht, Mathematical modelling based study and prediction of COVID-19 epidemic dissemination under the impact of lockdown in India, Frontiers in Physics 8 (2020), Article 586899. https://doi.org/10.3934/mbe.2021231. [32] S. Vaz and D. F. M. Torres, A dynamically-consistent nonstandard finite difference scheme for the SICA model, Math. Biosci. Eng. 18(4) (2021), 4552-4571. https://doi.org/10.3934/mbe.2021231. [33] World Health Organization, COVID-19, Natural Immunity: Scientific Brief, 10 May 2021. https://apps.who.int/iris/handle/10665/341241.
|