Keywords and phrases: isospectral flow, differential equations on manifolds, limit set, symmetric matrices, sparse matrices, banded matrices.
Received: August 10, 2022; Accepted: September 27, 2022; Published: October 13, 2022
How to cite this article: Krishna P. Pokharel, A study of isospectral flow on banded matrices, Far East Journal of Dynamical Systems 35 (2022), 7-22. http://dx.doi.org/10.17654/0972111822007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008. [2] A. Arsie and C. Ebenbauer, A Hessenberg-Jacobi isospectral flow, Nonlinear Differ. Equ. Appl. 22 (2015), 87-103. [3] A. Arsie and K. Pokharel, A normalizing isospectral flow on complex Hessenberg matrices, J. Math. Anal. Appl. 432(2) (2015), 787-805. [4] C. Chicone, Ordinary Differential Equations with Applications, 2nd ed., Springer, 2006. [5] M. Chu, Inverse eigenvalue problem, SIAM Rev. 40(1) (1998), 1-39. [6] P. Deift, L.-C. Li and C. Tomei, Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 42(4) (1989), 443-521. [7] H. Flaschka, The Toda lattice, II, Phys. Rev. B 9 (1974), 1924-1925. [8] S. Friedland, J. Nocedal and M. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM J. Numer. Anal. 24(3) (1987), 634-667. [9] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins, Baltimore, 1996. [10] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985. [11] A. Kaur, On solving an isospectral flow, J. Comput. Appl. Math. 308 (2016), 263-275. [12] P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Applications, 2nd ed., Academic Press, 1985. [13] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser Verlag, Vol. 1, 1990. [14] K. Pokharel, An isospectral flow for complex upper Hessenberg matrices, Doctoral dissertation, University of Toledo, OhioLINK Electronic Theses and Dissertations Center, 2015. [15] L. B. Ryashko and E. E. Shnol, On exponentially attracting invariant manifolds of ODEs, Nonlinearity 16 (2003), 147-160. [16] W. Symes, Hamiltonian group actions and integrable systems, Phys. D 1 (1980), 339-374. [17] W. Symes, The QR algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D 4 (1982), 275-280. [18] M. D. Webb, Isospectral algorithms, Toeplitz matrices and orthogonal polynomials, PhD thesis, University of Cambridge, 2017.
|