Keywords and phrases: novel coronavirus, mathematical model, Atangana-Baleanu fractional operator, Yang-Abdel-Cattani fractional operator, Sumudu transform, existence and uniqueness.
Received: July 2, 2022; Revised: August 25, 2022; Accepted: September 21, 2022; Published: October 11, 2022
How to cite this article: Ibtehal Alazman and Kholoud Albalawi, Comparative analysis of mathematical model of COVID-SARS using Atangana-Baleanu and Yang-Abdel-Cattani fractional derivative operators, Advances and Applications in Statistics 81 (2022), 23-52. http://dx.doi.org/10.17654/0972361722072
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] India’s first coronavirus death is confirmed in Karnataka, Hindustan Times, 12 March 2020, Retrieved: 27 March 2020. [2] Kerala Defeats Coronavirus: India’s Three COVID-19 Patients Successfully Recover, The Weather Channel, Archived from the original on 18 February 2020, Retrieved: 21 February 2020. [3] World Health Organization, Coronavirus, cited: 19 February, 2020. Available: WHO COVID-19 Situation Report 29. [4] Editorial, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China, International Journal of Infectious Diseases 91 (2020), 264-266. [5] World Health Organization, Coronavirus disease 2019, cited: 15 March, 2020. Available: https://www.who.int/health-topics/coronavirus. [6] World Health Organization, Coronavirus, cited: 19 January, 2020. Available: https://www.who.int/health-topics/coronavirus. [7] SRS Bulletin, Sample Registration System Office of The Registrar General, India Vital Statistics Division, West Block 1, Wing 1, 2nd Floor, R. K. Puram, New Delhi-110066, 9 pages. https://fdocuments.net/document/volume-52-no1-may-2019-srs-bulletin-srs-the-sample-registration-system-srs-is.html?page=1. [8] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth Printing, 1972. [9] M. Shrahili, R. S. Dubey and A. Shafay, Inclusion of fading memory to Banister model of changes in physical condition, Discrete Contin. Dyn. Syst. Ser. S 13(3) (2020), 881-888. [10] M. A. A. Oud, A. Ali, H. Alrabaiah, S. Ullah, M. A. Khan and S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load, Adv. Difference Equ. 2021(1) (2021), Article number: 106, 19 pp. [11] W. Gao, P. Veeresha, H. M. Baskonus, D. G. Prakasha and P. Kumar, A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos Solitons Fractals 138 (2020), 109929, 6 pp. [12] S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah and A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Solitons Fractals 139 (2020), 110256. [13] N. H. Tuan, H. Mohammadi and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fractals 140 (2020), 110107. [14] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale and A. H. Abdel-Aty, Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results in Physics 20 (2021), 103702. [15] M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID- 19 pandemic, Chaos Solitons Fractals 138 (2020), 110007. [16] G. M. Mittag-Leffler, Sur la nouvelle fonction C R Acad. Sci. Paris 137(2) (1903), 554-558. [17] K. N. Nabi, H. Abboubakar and P. Kumar, Forecasting of COVID-19 pandemic: from integer derivatives to fractional derivatives, Chaos Solitons Fractals 141 (2020), 110283. [18] K. S. Nisar, S. Ahmad, A. Ullah, K. Shah, H. Alrabaiah and M. Arfan, Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data, Results in Physics 21 (2021), 103772. [19] R. Kumari, S. Kumar, R. C. Poonia, V. Singh, L. Raja, V. Bhatnagar and P. Agarwal, Analysis and predictions of spread, recovery, and death caused by COVID-19 in India, Big Data Mining and Analytics 4(2) (2021), 65-75. [20] B. S. T. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, Solution of fractional oxygen diffusion problem having without singular kernel, J. Nonlinear Sci. Appl. 10 (2017), 299-307. [21] V. B. L. Chaurasia and R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag- Leffler type function, International Scholarly Research Notices 2011 (2011), 1-9. Article ID: 682381. [22] S. Kumar, K. S. Nisar, R. Kumar, C. Cattani and B. Samet, A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force, Mathematical Methods in the Applied Sciences 43(7) (2020), 4460-4471. [23] R. S. Dubey, M. N. Mishra and P. Goswami, Effect of Covid-19 in India - a prediction through mathematical modeling using Atangana-Baleanu fractional derivative, Journal of Interdisciplinary Mathematics (2022), 1-14. [24] K. Modi, L. Umate, K. Makade, R. S. Dubey and P. Agarwal, Simulation based study for estimation of COVID-19 spread in India using SEIR model, Journal of Interdisciplinary Mathematics 24(2) (2020), 245-258. [25] S. Kumar, S. Ghosh, B. Samet and E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Mathematical Methods in the Applied Sciences 43(9) (2020), 6062-6080. [26] V. S. Erturk and P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Solitons Fractals 139 (2020), 110280. [27] P. A. Naik, M. Yavuz, S. Qureshi, J. Zu and S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, The European Physical Journal Plus 135(10) (2020), 1-42. [28] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Engineering Journal 59(4) (2020), 2379-2389. [29] Y. M. Chu, A. Ali, M. A. Khan, S. Islam and S. Ullah, Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia, Results in Physics 21 (2021), 103787. [30] A. Atangana and A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform, Alexandria Engineering Journal 59(4) (2020), 1971-1984. [31] R. S. Dubey, D. Baleanu, M. N. Mishra and P. Goswami, Solution of modified Bergman minimal blood glucose-insulin model using Caputo-Fabrizio fractional derivative, CMES - Computer Modeling in Engineering and Sciences 128(3) (2021), 1247-1263. [32] I. Malyk, M. Mohammed, A. Shrahili, A. R. Shafay, P. Goswami, S. Sharma and R. S. Dubey, Analytical solution of non-linear fractional Burger’s equation in the framework of different fractional derivative operators, Results in Physics 19 (2020), 103397. https://doi.org/10.1016/j.rinp.2020.103397. [33] M. A. Almuqrin, P. Goswami, S. Sharma, I. Khan, R. S. Dubey and A. Khan, Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative, Results in Physics 26 (2021), 104295. https://doi. org/10.1016/j.rinp.2021.104295. [34] S. S. Alzaid, B. T. S. Alkahtani, S. Sharma and R. S. Dubey, Numerical solution of fractional model of HIV-1 contamination in framework of different fractional derivatives, Journal of Function Spaces 2021 (2021), 10 pp. Article ID: 6642957. https://doi.org/10.1155/2021/6642957. [35] V. S. Ertürk, G. Zaman and S. Momani, A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl. 64(10) (2012), 3065-3074. [36] A. S. Shaikh and K. S. Nisar, Transmission dynamics of fractional order typhoid fever model using Caputo-Fabrizio operator, Chaos Solitons Fractals 128 (2019), 355-365. [37] M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, The European Physical Journal Plus 132(10) (2017), 1-16. [38] K. M. Saad, D. Baleanu and A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger’s equations, Comput. Appl. Math. 37(4) (2018), 5203-5216. [39] D. Kumar, J. Singh, D. Baleanu and S. Rathore, Analysis of a fractional model of the Ambartsumian equation, The European Physical Journal Plus 133(7) (2018), 1-7. [40] B. R. Sontakke, A. Shaikh and K. S. Nisar, Approximate solutions of a generalized Hirota-Satsuma coupled KdV and a coupled mKdV system with time fractional derivatives, Malays. J. Math. Sci. 12(2) (2018), 175-196. [41] V. Daftardar-Gejji and H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316(2) (2006), 753-763. [42] S. Kumar, A. Kumar and D. Baleanu, Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger’s equations arise in propagation of shallow water waves, Nonlinear Dynamics 85(2) (2016), 699-715. [43] A. S. Shaikh and B. R. Sontakke, Impulsive initial value problems for a class of implicit fractional differential equations, Computational Methods for Differential Equations 8(1) (2020), 141-154. [44] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Vol. 2, Springer, New York, 2012, 508 pp. [45] A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Advances in Difference Equations 2020(1) (2020), 1-19. [46] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Engineering Journal 59(4) (2020), 2379-2389.
|