Keywords and phrases: Malcev algebras, Malcev color algebras, ε-Jacobian.
Received: July 4, 2022; Accepted: August 21, 2022; Published: September 30, 2022
How to cite this article: Dama Moussa and Patricia L. Zoungrana, On identities in Malcev color algebras, Universal Journal of Mathematics and Mathematical Sciences 16 (2022), 41‑65. http://dx.doi.org/10.17654/2277141722008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Albuquerque Helena and Alberto Elduque, Malcev superalgebras with trivial nucleus, Communications in Algebra 21(9) (1993), 3147-3164. [2] Daniel De La Conception, Universal enveloping algebras for Malcev color algebras, 2015. arXiv:1509.04591v1. [3] F. Gürsey and C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific, Singapore, 1996. [4] F. S. Kerdman, Analytic Moufang loops in the large, Alg. Logic 18 (1980), 325 347. [5] A. Koulibaly, J. C. Béré and S. Touré, Sous-algèbres de cartan d’une superalgèbre de Malcev, Algebras Groups and Geometries 18 (2001), 115-138. [6] E. N. Kuz’min, The connection between Mal’cev algebras and analytic Moufang loops, Alg. Logic 10 (1971), 1-14. [7] A. Malcev, Analytic loops, Mat. Sb. 78 (1955), 569-578. [8] H. C. Myung, Malcev-admissible Algebras, Progress in Math. 64, Birkhauser, Boston, MA, 1986. [9] P. T. Nagy, Moufang loops and Malcev algebras, Sem. Sophus Lie 3 (1993), 65 68. [10] S. Okubo, Super-composition algebras, Algebras Groups Geom. 1 (1984), 62-108. [11] S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics, Cambridge Univ. Press, Cambridge, UK, 1995. [12] L. V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic, The Netherlands, 1999.
|