Keywords and phrases: MHD, Darcy-Forchheimer, Prandtl fluid, convective boundary condition, radiation.
Received: August 30, 2020; Revised: April 6, 2022; Accepted: May 27, 2022; Published: September 30, 2022
How to cite this article: V. Meenakshi, C. Srinivas Reddy, M. Madhu and Kishan Naikoti, The impact of thermal transmission on Darcy-Forchheimer flow of Prandtl nanofluid over a convective stretching surface, JP Journal of Heat and Mass Transfer 29 (2022), 47-66. http://dx.doi.org/10.17654/0973576322043
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, D. A. Siginer, H. P. Wang, eds., Developments and Applications of Non-Newtonian Flows, ASME FED, 231/MD, Vol. 66, 1995, pp. 99-105. [2] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer 128(10) (2006), 240-250. [3] A. V. Kuznetsov and D. A. Nield, Natural convective boundary layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49 (2010), 243-247. [4] W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer 53 (2010), 2477-2483. [5] O. D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci. 50 (2011), 1326-1332. [6] B. J. Gireesha, R. S. R. Gorla and B. Mahanthesh, Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet, J. Nanofluids 4 (2015), 474-484. [7] S. Nadeem and S. T. Hussain, Flow and heat transfer analysis of Williamson nanofluid, Appl. Nanosci. 4 (2014), 1005-1012. [8] R. S. R. Gorla and A. Chamkha, Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid, J. Modern Phys. 2(15) (2011), 62-71. [9] M. Sheikholeslami, R. Ellahi, H. R. Ashorynejad, G. Domairry and T. Hayat, Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium, Comput. Theor. Nanosci. 11 (2014), 486-496. [10] Macha Madhu and Naikoti Kishan, Finite element analysis of heat and mass transfer by MHD mixed convection stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface with radiation, Journal of Egyptian Mathematical Society 24 (2016), 458-470. [11] A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model, International Journal of Thermal Sciences 77 (2014), 126-129. [12] C. S. Reddy, N. Kishan and M. Madhu, Finite element analysis of Eyring-Powell nano fluid over an exponential stretching sheet, Int. J. Appl. Comput. Math. 4(1) (2018), 1-13. https://doi.org/10.1007/s40819-017-0438-x. [13] B. Prabhakar, B. Shankar and R. U. Haq, Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet, Neural Comput Appl. 29 (2018), 805-814. [14] Macha Madhu and Naikoti Kishan, MHD flow and heat transfer of Casson nanofluid over a wedge, Mechanics and Industry 18(2) (2017). [15] M. M. Rashidi, M. Nasiri, Marzieh Khezerloo and Najib Laraqi, Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, Journal of Magnetism and Magnetic Materials 401 (2016), 159-168. [16] P. Rana and R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 212-226. [17] O. D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci. 50 (2011), 1326-1332. [18] L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. 21 (1970), 645-647. [19] T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mechanica 152 (2001), 191-196. [20] S. Mukhopadhyay, Casson fluid flow and heat transfer over a nonlinearly stretching surface, Chin. Phys. B 22 (2013), 074701. DOI: 10.1088/1674-1056/22/7/074701. [21] T. Fang, J. Zhang and Yongtang Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput. 218 (2012), 7241-7252. [22] B. Mahanthesh, N. S. Shashikumar and G. Lorenzini, Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk, Journal of Thermal Analysis and Calorimetry 145 (2021), 3339-3347. https://doi.org/10.1007/s10973-020-09927-x. [23] B. Mahanthesh and B. Gireesha, Dual solutions for unsteady stagnation-point flow of Prandtl nanofluid past a stretching/shrinking plate, Defect and Diffusion Forum 388 (2018), 124-134. 10.4028/www.scientific.net/DDF.388.124. [24] M. M. Khader and Ahmed M. Megahed, Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity, Eur. Phys. J. Plus 128 (2013), 100. [25] M. Patel and M. G. Timol, The stress-strain relationship for visco-inelastic non- Newtonian fluids, Int. J. Appl. Math. Mech. 6(12) (2010), 79-93. [26] N. S. Akbar, S. Nadeem and Changhoon Lee, Peristaltic flow of a Prandtl fluid model in an asymmetric channel, Int. J. Phys. Sci. 7 (2012), 687-695. [27] Imad Khan, Arif Hussain, M. Y. Malik and Safyan Mukhtar, On magnetohydrodynamics Prandtl fluid flow in the presence of stratification and heat generation, Phys. A 540 (2019), 123008. DOI: 10.1016/j.physa.2019.123008.
|