Keywords and phrases: foliation, foliation having its dense leaves, extension of foliation, Lie foliation, Lie algebra, Lie subalgebra, Lie group, Lie subgroup, local central transverse vector field, local Killing transverse vector field, locally constant sheaf of germs of local transverse Killing vector fields.
Received: May 6, 2022; Revised: August 11, 2022; Accepted: August 20, 2022; Published: September 21, 2022
How to cite this article: Cyrille Dadi, Determining Lie algebra of transverse foliated vector field of the extension of dense leaf Lie foliation on a compact connected manifold, Universal Journal of Mathematics and Mathematical Sciences 16 (2022), 21-39. http://dx.doi.org/10.17654/2277141722007
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] C. Dadi, Sur les extensions des feuilletages, Thèse Unique, Université de Cocody, Abidjan, 2008. [2] C. Dadi, Dense leaf Riemannian foliation admitting a Lie extension on a compact connected manifold, JP Journal of Geometry and Topology 27 (2022), 49-66. [3] C. Dadi and H. Diallo, Extension d’un feuilletage de Lie minimal d’une variété compacte, Afrika Mat. (3) 18 (2007), 34-45. [4] E. Fédida, Feuilletages du plan - Feuilletages de Lie, Thèse d’Etat, Strasbourg, 1973. [5] E. Fédida, Sur l’existence des Feuilletages de Lie, CRAS de Paris 278 (1974), 835-837. [6] C. Godbillon, Feuilletage, Etude Géométriques I, Publ., IRMA, Strasbourg, 1985. [7] P. Molino, Riemannian Foliations, Birkhäuser, 1988. [8] B. Reinhart, Foliated manifold with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
|