Keywords and phrases: spectral methods, collocation, orthogonal polynomials, interpolation, rational Legendre functions.
Received: July 7, 2022; Accepted: August 29, 2022; Published: September 12, 2022
How to cite this article: Obaid J. Algahtani, Choice of a basis to solve the Lane-Emden equation, Advances in Differential Equations and Control Processes 29 (2022), 13-26. http://dx.doi.org/10.17654/0974324322031
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] C. I. Gheorghiu, Spectral Methods for Differential Equations, Cluj-Napoca, Romania, 2007. [2] J. P. Boyd, Chebyshev and Fourier Spectral Methods, DOVER Publications, 2000. [3] R. B. Meyers, T. D. Taylor and J. W. Murdock, Pseudo-spectral simulation of a two dimensional vortex flow in a stratified, incompressible fluid, J. Comput. Fluid 43 (1981), 180-188. [4] C. Basdevant, M. Deville, P. Haldenwang, J. M. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi and A. T. Patera, Spectral and finite difference solutions of the Burgers equation, Computers and Fluids 14 (1986), 23-41. [5] J. Shen and R. Temam, Nonlinear Galerkin method using Chebyshev and Legendre polynomials. I. The one-dimensional case, SIAM J. Numer. Anal. 32 (1995), 215-234. [6] E. Deeba and S. A. Khuri, A decomposition method for solving the nonlinear Klein-Gordon equation, J. Comput. Phys. 124 (1996), 442-448. [7] J. P. Boyd, The Blasius function in the complex plane, Experiment. Math. 8 (2012), 381-394. [8] K. Parand, M. Dehgan and A. Taghavi, Modified generalized Laguerre function tau method for solving laminar viscous flow: the Blasius equation, Internat. J. Numer. Methods Heat Fluid Flow 20 (2010), 728-743. [9] K. Parand, M. Dehgan and F. Baharifard, Solving a laminar boundary layer equation with the rational Gegenbauer functions, Appl. Math. Model. 37 (2013), 851-863. [10] K. Parand, M. Nikaya and J. A. Rad, Solving nonlinear Lane-Emden type equations using Bessel orthogonal functions collocation method, Celestial Mechanics and Dynamical 116 (2013), 97-107. [11] K. Parand, M. Dehgan and A. Pirkhedri, The sinc-collocation method for solving the Thomas-Fermi equation, J. Comput. Appl. Math. 237 (2013), 244-252. [12] J. A. Rad, S. Kazem, M. Shaban, K. Parand and A. Yildrim, Numerical solution of fractional differential equations with a tau method based on Legendre and Bernstein polynomials, Math. Methods Appl. Sci. 37 (2014), 329-342. [13] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1969. [14] A. M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl. Math. Comput. 118 (2001), 287-310. [15] S. A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type, Appl. Math. Comput. 181 (2006), 1417-1422. [16] K. Parand, M. Shahini and M. Dehghan, Rational Legendre pseudospectral approach for solving nonlinear equations of Lane-Emden type, J. Comput. Phys. 228 (2009), 8830-8840. [17] K. Parand, M. Dehghan, A. R. Rezai and S. M. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Comm. 181 (2010), 1096-1108. [18] R. E. Bellman, Stability Theory of Differential Equations, Dover, New York, 2008. [19] W. G. Kelley and A. C. Peterson, The Theory of Differential Equations: Classical and Qualitative, Springer-Verlag, New York, 2010.
|