Keywords and phrases: Bayesian, kriging, spatial estimation, HIV prevalence, female sex workers.
Received: March 2, 2022; Accepted: May 25, 2022; Published: August 8, 2022
How to cite this article: Arumugam Elangovan and Vasna Joshua, Spatial Bayesian estimation of HIV infection among female sex workers (FSW) in India, JP Journal of Biostatistics 21 (2022), 55-66. http://dx.doi.org/10.17654/0973514322020
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. K. Sgaier, M. Claeson, C. Gilks et al., Knowing your HIV/AIDS epidemic and tailoring an effective response: how did India do it? Sexually Transmitted Infections 88(4) (2012), 240-249. [2] R. S. Paranjape and S. J. Challacombe, HIV/AIDS in India: an overview of the Indian epidemic, Oral Diseases 22(S1) (2016), 10-14. [3] B. Sangal, P. Kumar and N. Dhingra, HIV prevalence trend from HIV sentinel surveillance over a decade in India: an overview, Indian J. Public Health 62 (2018), 138-142. [4] R. K. Joshi and S. M. Mehendale, Determinants of consistently high HIV prevalence in Indian districts: a multi-level analysis, PLoS One 14(5) (2019), e0216321. [5] D. Sahu, P. Kumar, N. Chandra et al., Findings from the 2017 HIV estimation round and trend analysis of key indicators 2010-2017: evidence for prioritizing HIV/AIDS programme in India, Indian J. Med. Res. 151(6) (2020), 562-570. [6] National AIDS Control Organization, National Integrated Biological and Behavioural Surveillance (IBBS), India 2014-15, NACO, Ministry of Health and Family Welfare, Government of India, New Delhi, 2015. [7] A. H. Auchincloss, A. V. D. Roux, D. G. Brown, T. E. Raghunathan and C. A. Erdmann, Filling the gaps: spatial interpolation of residential survey data in the estimation of neighborhood characteristics, Epidemiology 18(4) (2007), 469-478. [8] D. F. Cuadros, B. Sartorius, C. Hall, A. Akullian, T. Bärnighausen and F. Tanser, Capturing the spatial variability of HIV epidemics in South Africa and Tanzania using routine healthcare facility data, International Journal of Health Geographics 17(1) (2018), 1-9. [9] G. Ramjee, B. Sartorius, N. Morris, H. Wand, T. Reddy, J. D. Yssel and F. Tanser, A decade of sustained geographic spread of HIV infections among women in Durban, South Africa, BMC Infectious Diseases 19(1) (2019), 1-9. [10] L. C. Zulu, E. Kalipeni and E. Johannes, Analyzing spatial clustering and the spatiotemporal nature and trends of HIV/AIDS prevalence using GIS: the case of Malawi, 1994-2010, BMC Infectious Diseases 14(1) (2014) 1-21. [11] P. K. Mani, A. Mandal, S. Biswas, B. Sarkar, T. Mitran and R. S. Meena, Remote sensing and geographic information system: a tool for precision farming, Geospatial Technologies for Crops and Soils, Springer, Singapore, 2021, pp. 49-111. [12] M. M. Fischer, H. J. Scholten and D. Unwin, Geographic information systems, spatial data analysis and spatial modelling: an introduction, Spatial Analytical Perspectives on GIS, Routledge, 2019, pp. 3-20. [13] K. Kondo, Testing for global spatial autocorrelation in Stata, 2021. Available from: https://github.com/keisukekondokk/moransi. Accessed on: February 1, 2021. [14] Noel A. C. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, 1993. [15] Paulo J. Ribeiro, Jr., Peter J. Diggle, Martin Schlather, Roger Bivand and Brian Ripley, geoR: analysis of geostatistical data, R Package Version 1.8-1, 2020. Available from: https://CRAN.R-project.org/package=geoR. Accessed on: December 27, 2021. [16] Paulo J. Ribeiro, Jr. and Peter J. Diggle, Bayesian inference in Gaussian model-based geo-statistics, Technical Report ST-99-08, pp. 1-50. http://www.leg.ufpr.br/geoR/geoRdoc/bayeskrige.pdf. Accessed on: January 30, 2021. [17] P. Kumar, D. Sahu, S. Rajan, V. V. R. Mendu, C. Das, A. Kumar, N. Chandra, B. Camara, S. Rai, E. Arumugam, S. V. Godbole et al., District-level HIV estimates using the spectrum model in five states of India, 2017, Medicine 100(28) (2021), e26578. doi: 10.1097/MD.0000000000026578.
|