Keywords and phrases: cure rate model, EM algorithm, maximum likelihood estimates, Akaike information criteria, Bayesian information criteria.
Received: April 26, 2022; Accepted: June 21, 2022; Published: August 6, 2022
How to cite this article: Janani Amirtharaj and G. Vijayasree, COM-Poisson cure rate model with generalized exponential lifetimes under interval-censoring: an EM-based approach, JP Journal of Biostatistics 21 (2022), 29-54. http://dx.doi.org/10.17654/0973514322019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. Balakrishnan and S. Pal, EM algorithm-based likelihood estimation for some cure rate models, Journal of Statistical Theory and Practice 6 (2012), 698-724. [2] N. Balakrishnan and S. Pal, Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes, Stat. Methods Med. Res. 25 (2013a), 1535-1563. [3] N. Balakrishnan and S. Pal, Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family, Comput. Statist. Data Anal. 67 (2013b), 41-67. [4] N. Balakrishnan and S. Pal, An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetimes and model discrimination using likelihood and information-based methods, Comput. Statist. 30 (2014), 151-189. [5] N. Balakrishnan and S. Pal, Likelihood inference for flexible cure rate models with gamma lifetimes, Comm. Statist. Theory Methods 44 (2015), 4007-4048. [6] J. Berkson and R. P. Gage, Survival cure for cancer patients following treatment, J. Amer. Stat. Assoc. 47 (1952), 501-515. [7] J. W. Boag, Maximum likelihood estimates of the proportion of patients cured by cancer therapy, Journal of the Royal Statistical Society: Series B 11 (1949), 15-53. [8] R. W. Conway and W. L. Maxwell, A queuing model with state dependent services rates, Journal of Industrial Engineering 12 (1962), 132-136. [9] D. Cox and D. Oakes, Analysis of Survival Data, Chapman & Hall, London, 1984. [10] F. Daly and R. E. Gaunt, The Conway-Maxwell-Poisson distribution: distributional theory and approximation, Latin American Journal of Probability and Mathematical Statistics 13 (2016), 635-658. [11] K. Davies, S. Pal and J. A. Siddiqua, Stochastic EM algorithm for generalized exponential cure rate model and an empirical study, J. Appl. Stat. 48 (2021), 2112-2135. [12] V. T. Farewell, The use of mixture models for the analysis of survival data with long-term survivors, Biometrics 38 (1982), 1041-1046. [13] R. D. Gupta and D. Kundu, Generalized exponential distribution: existing results and some recent developments, J. Statist. Plann. Inference 137 (2007), 3537-3547. [14] J. B. Kadane, G. Shmueli, T. P. Minka, S. Borle and P. Boatwright, Conjugate analysis of the Conway-Maxwell-Poisson distribution, Bayesian Analysis 1 (2006), 363-374. [15] N. Kannan, D. Kundu, P. Nair and R. C. Tripathi, The generalized exponential cure rate model with covariates, J. Appl. Stat. 37(9-10) (2010), 1625-1636. [16] A. Y. C. Kuk and C. H. Chen, A mixture model combining logistic regression with proportional hazards regression, Biometrika 79 (1992), 531-541. [17] T. A. Louis, Finding the observed information matrix when using the EM algorithm, Journal of the Royal Statistical Society: Series B 44 (1982), 226-233. [18] R. A. Maller and X. Zhou, Survival Analysis with Long-term Survivors, John Wiley & Sons, New York, 1996. [19] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, Second ed., John Wiley & Sons, Hoboken, New Jersey, 2008. [20] S. Pal and N. Balakrishnan, Likelihood inference based on EM algorithm for the destructive length-biased Poisson cure rate model with Weibull lifetime, Comm. Statist. Simulation Comput. 47(3) (2018), 644-660. https://doi.org/10.1080/03610918.2015.1053918. [21] S. Pal and N. Balakrishnan, Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime, Statist. Probab. Lett. 116 (2016), 9-20. [22] S. Pal and N. Balakrishnan, Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes, Stat. Methods Med. Res. 26(5) (2017), 2093-2113. [23] S. Pal and N. Balakrishnan, An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime, J. Stat. Comput. Simulation 87(6) (2017a), 1107-1129. [24] S. Pal and N. Balakrishnan, Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data, Comput. Statist. 32(2) (2017b), 429-449. [25] Y. Peng and K. B. G. Dear, A nonparametric mixture model for cure rate estimation, Biometrics 56 (2000), 237-243. [26] Y. Peng, K. B. G. Dear and J. W. Denham, A generalized F mixture model for cure rate estimation, Stat. Med. 7 (1998), 813-830. [27] J. Rodrigues, M. de Castro, V. G. Cancho and N. Balakrishnan, COM-Poisson cure rate survival models and an application to a cutaneous melanoma data, J. Statist. Plann. Inference 139 (2009), 3605-3611. [28] J. Rodrigues, G. M. Coderio, V. G. Cancho and N. Balakrishnan, Relaxed Poisson cure rate model, Biom. J. 58 (2016), 397-415. [29] G. Shmueli, T. P. Minka, J. B. Kadane, S. Borle and P. Boatwright, A useful distribution for fitting discrete data: revival of the Conway-Maxwell-Poisson distribution, Journal of the Royal Statistical Society: Series C 54 (2005), 127-142. [30] J. M. G. Taylor, Semi-parametric estimation in failure time mixture model, Biometrics 51 (1995), 899-907. [31] P. Wiangnak and S. Pal, Gamma lifetimes and associated inference for interval-censored cure rate model with COM-Poisson competing cause, Comm. Statist. Theory Methods 47(6) (2017), 1491-1509. [32] A. Y. Yokovlev, B. Asselain, V. Bardou, A. Fourquet, T. Hoang, A. Rochefediere and A. Tsodkov, A simple stochastic model of tumor recurrence and its application to data on premenopausal breast cancer, Biometrics et Analyse de Donnees Spatio-Temporelles 12 (1993), 66-82.
|