Keywords and phrases: Casson fluid, stretching cylinder, thermal conductivity, finite difference, viscous dissipation, thermophoretic.
Received: June 12, 2022; Accepted: July 5, 2022; Published: August 5, 2022
How to cite this article: T. H. Al-Arabi, H. R. Ibrahim and A. Mahdy, Thermal conductivity and thermophoretic impacts on MHD non-Newtonian fluid flow outside a permeable stretching cylinder, Advances and Applications in Fluid Mechanics 29 (2022), 1-26. http://dx.doi.org/10.17654/0973468622005
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. A. Shehzad, T. Hayat, S. Asghar and A. Alsaedi, Stagnation point flow of thixotropic fluid over a stretching sheet with mass transfer and chemical reaction, J. Appl. Fluid Mech. 8 (2015), 465-471. [2] N. Casson, A Flow Equation for Pigment-oil Suspensions of the Printing Ink Type, C. C. Mill, ed., Rheol. Disperse Syst., Pergamon Press, Oxford, 1959, pp. 84-104. [3] A. K. Abdul Hakeem, P. Renuka, N. Vishnu Ganesh, R. Kalaivanan and B. Ganga, Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer, J. Magn. Magn. Mater. 401 (2016), 354-361. [4] Z. Mehmood, R. Mehmood and Z. Iqbal, Numerical investigation of micropolar Casson fluid over a stretching sheet with internal heating, Commun. Theor. Phys. 67 (2017), 443. [5] Z. Iqbal, R. Mehmood, E. Azhar and Z. Mehmood, Impact of inclined magnetic field on micropolar Casson fluid using Keller-Box algorithm, Eur. Phys. J. Plus 4 (2017), 1-13. [6] M. Imtiaz, T. Hayat and A. Alsaedi, Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions, Adv. Powder Technol. 27 (2016), 2245-2256. [7] A. Mahdy and S. E. Amed, Unsteady MHD convective flow of non-Newtonian Casson fluid in the stagnation region of an impulsively rotating sphere, Journal of Aerospace Engineering 30(5) (2017), 04017036. [8] A. Mahdy, Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson nanofluid flow in the stagnation point of rotating sphere, Appl. Math. Mech. 39(9) (2018), 1327-1340. [9] F. M. Hady, A. Mahdy, R. A. Mohamed, S. E. Ahmed and Omima A. Abo-Zaid, Unsteady natural convection flow of a dusty non-Newtonian Casson fluid along a vertical wavy plate: numerical approach, J. Braz. Soc. Mech. Sci. Engin. 41(11) (2019), 1-20. [10] E. R. El-Zahar, A. Mahdy, A. M. Rashad, W. Saad and L. F. Seddek, Unsteady MHD mixed convection flow of non-Newtonian Casson hybrid nanofluid in the stagnation zone of sphere spinning impulsively, Fluids 6(6) (2021), 197. [11] S. Hazarika and S. Ahmed, Numerical investigation of endothermic/exothermic reaction in MHD natural convective nano-fluid flow over a vertical cone with heat source/sink, Walailak J. Sci. Tech. 18(17) (2021), 1-18. [12] S. Hazarika and S. Ahmed, Brownian motion and thermophoresis behavior on micropolar nano-fluid - a numerical outlook, Math. Comput. Simul. 192 (2022), 452-463. [13] R. Tsai, A simple approach for evaluating the effect of wall suction and thermophoresis on aerosol particle deposition from a laminar flow over a flat plate, Int. Commun. Heat Mass Transfer 26(2) (1999), 249-257. [14] L. Talbot, R. K. Cheng, R. W. Scheffer and D. P. Wills, Thermophoresis of particles in a heated boundary layer, J. Fluid Mech. 101 (1980), 737-758. [15] A. J. Chamkha and I. Camille, Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface, Int. J. Numer. Method Heat Fluid Flow 10(4) (2012), 432-448. [16] S. A. Ahmed and A. Mahdy, Unsteady MHD double diffusive convection in the stagnation region of an impulsively rotating sphere in the presence of thermal radiation effect, J. Taiwan Instit. Chemical Eng. 58 (2016), 173-180. [17] A. Mahdy, Unsteady MHD slip flow of a non-Newtonian Casson fluid due to stretching sheet with suction or blowing effect, J. Appl. Fluid Mech. 9 (2016), 785-793. [18] M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat and T. Yasmeen, Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition, Int. J. Heat Mass Transfer 102 (2016), 766-772. [19] B. M. J. Rana, S. M. Arifuzzaman, Sk. Reza-E-Rabbi, S. F. Ahmed and M. S. Khan, Energy and magnetic flow analysis of Williamson micropolar nanofluid through stretching sheet, Int. J. Heat Tech. 37(2) (2019), 487-496. [20] S. R. Sheri and M. D. Shamshuddin, Heat and mass transfer on the MHD flow of micro polar fluid in the presence of viscous dissipation and chemical reaction, Procedia Eng. 127 (2015), 885-892. [21] S. A. Shehzad, T. Hayat and A. Alsaedi, MHD flow of Jeffrey nanofluid with convective boundary conditions, J. Braz. Soc. Mech. Sci. Eng. 37 (2015), 873-883. [22] A. M. Rashad, W. A. Khan, S. M. M. EL-Kabeir and A. M. A. EL-Hakiem, Mixed convective flow of micropolar nanofluid across a horizontal cylinder in saturated porous medium, Appl. Sci. 9 (2019), 5241. https://doi.org/10.3390/app9235241. [23] S. M. Arifuzzaman, M. S. Khan, M. F. U. Mehedi, B. M. J. Rana and S. F. Ahmmed, Chemically reactive and naturally convective high-speed MHD fluid flow through an oscillatory vertical porous-plate with heat and radiation absorption effect, Eng. Sci. Tech., an Int. J. 21(2) (2018), 215-228. [24] A. Syakila and I. Pop, Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids, Int. Commun. Heat Mass Transfer 37 (2010), 987-991. [25] A. S. R. Zehba, A. M. Aly and S. E. Ahmed, Natural convection flow of a nanofluid-filled V-shaped cavity saturated with a heterogeneous porous medium: incompressible smoothed particle hydrodynamics analysis, Ain Shams Eng. J. 12(2) (2021), 2033-2046. [26] G. S. Seth, A. Bhattacharyya, R. Kumar and M. K. Mishra, Modeling and numerical simulation of hydromagnetic natural convection Casson fluid flow with nth-order chemical reaction and Newtonian heating in porous medium, J. Porous Media 22(9) (2019), 1141-1157. [27] M. E. M. Khedr, A. J. Chamkha and M. Bayomi, MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption, Nonlinear Anal. Model Contr. 14(1) (2017), 27-40. [28] T. Hayat, S. Ali, M. Awais and A. Alsaedi, Joule heating effects in MHD flow of Burger’s fluid, Heat Tran. Res. 47(12) (2016), 1083-1092. [29] N. A. Alreshidi, Z. Shah, A. Dawar, P. Kumam, M. Shutaywi and W. Watthayu, Brownian motion and thermophoresis effects on MHD three dimensional nanofluid flow with slip conditions and Joule dissipation due to porous rotating disk, Molecules 25 (2020), 729. doi: 10.3390/molecules25030729. [30] T. Hayat and M. Qasim, Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis, Int. J. Heat Mass Tran. 53 (2010), 4780-4788. [31] Zahir Shah, Luthais B. McCash, Abdullah Dawar and Ebenezer Bonyah, Entropy optimization in Darcy-Frochheimer MHD flow of water based copper and silver nanofluids with Joule heating and viscous dissipation effects, AIP Adv. 10 (2020), 065137. doi: 10.1063/5.0014952. [32] N. Sandeep and C. Sulochana, Dual solutions for unsteady mixed convective flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Eng. Sci. Tech., an Int. J. 18 (2015), 738-745. [33] Thirupathi Thumma and S. R. Mishra, Effect of nonuniform heat source/sink, and viscous and Joule dissipation on 3D Eyring-Powell nanofluid flow over a stretching sheet, J. Computational Design Engineering 7(4) (2020), 412-426. doi: 10.1093/jcde/qwaa034. [34] B. C. Rout, S. R. Mishra and T. Thumma, Effect of viscous dissipation on Cu-water and Cu-kerosene nanofluids of axisymmetric radiative squeezing flow, Heat Transfer-Asian Research 48(7) (2019), 3039-3054. doi: 10.1002/htj.21529. [35] K. Naganthran, Md Basir, T. Thumma, E. Olubunmi, R. Nazar and I. Tlili, Scaling group analysis of bioconvective micropolar fluid flow and heat transfer in a porous medium, J. Therm. Anal. Calorim. 143 (2021), 1943-1955. [36] T. Thumma and V. M. Magagula, Transient electromagnetohydrodynamic radiative squeezing flow between two parallel Riga plates using a spectral local linearization approach, Heat Transfer-Asian Research 49(1) (2020), 67-85. doi: 10.1002/htj.21599. [37] C. Y. Wang, Fluid flow due to a stretching cylinder, Phys. Fluids 31 (1988), 466-468. [38] T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, 1988. [39] A. Ishak, R. Nazar and I. Pop, Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder, Appl. Math. Model. 32 (2008), 2059-2066.
|