Keywords and phrases: short fiber, orientation, polymer, crystallization, numerical simulation, finite difference method.
Received: May 12, 2022; Revised: June 9, 2022; Accepted: June 24, 2022; Published: July 15, 2022
How to cite this article: T. El Asri, M. Cherraj, K. Gueraoui and S. Men-La-Yakhaf, Numerical modelling of the germination influence on the short fiber orientation, JP Journal of Heat and Mass Transfer 28 (2022), 85-107. http://dx.doi.org/10.17654/0973576322036
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proceedings of the Royal Society of London, Series A 102(715) (1922), 161-179. [2] G. G. Lipscomb, Analysis of suspension rheology in complex flows, Ph.D. Dissertation, University of California, Berkeley, 1987. [3] M. Vincent, E. Devilers and J. F. Agassant, Fiber orientation in injection molding of reinforced thermoplastics, Journal of Non-Newtonian Fluid Mechanics 73 (1997), 317-326. [4] F. Folgar and C. L. Tucker, Orientation behavior of fibers in concentrated suspensions, J. Reinf. Plast. Compos. 3 (1984), 98-119. [5] H. El-Tourroug, K. Gueraoui, N. Hassanain, I. Modhaffar and S. Men-La-Yakhaf, Numerical and mathematical modeling of the injection for incompressible fluids through rigid cylindrical duct: application of melted polymers PPH, Appl. Math. Sci. 8(180) (2014), 8953-8964. [6] I. Modhaffar, K. Gueraoui, S. Men-La-Yakhaf and H. El-Tourroug, Simulation study for prediction of short fiber orientation reinforced thermoplastics (2015). DOI: 10.1063/1.4914262. [7] S. Prager, Stress-strain relation in a suspension of dumbells, Trans. Soc. Rheol. 1 (1994), 1-99. [8] G. L. Hand, A theory of anisotropic fluids, J. Fluid Mech. 13 (1962), 33-46. [9] R. S. Bay, Fiber orientation in injection moulded composites: a comparison of theory and experiment, Ph.D. Dissertation, University of Illinois at Urbana-Champagne, 1991. [10] C. Carrot and J. Guillet, Viscoélasticité non linéaire des polymères fondus, Tech. Ing., AM1630. [11] A. Chapman, Y. Saad and L. Wigton, High order ILU preconditioners for CFD problems, Rapport Technique, AMSI, Minnesota Supercomputer Institute, 1996. [12] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. [13] S. G. Advani and C. L. Tucker, A numerical simulation of short fiber orientation in compression molding, Polym. Compos. 11 (1990b), 164-173. [14] M. C. Altan, S. Subbiah, S. I. Guceri and R. B. Pipes, Numerical prediction of three dimensional fiber orientation in Hele-Shaw flows, Polym. Eng. Sci. 30 (1990), 848-859. [15] I. Modhaffar, K. Gueraoui, H. El-Tourroug and S. Men-La-Yakhaf, Numerical study of short fiber orientation in simple injection molding processes, AIP Conference Proceedings 1653(1) (2015). [16] I. Modhaffar, K. Gueraoui, S. Men-La-Yakhaf, H. El-Tourroug, M. Taibi, M. Driouich, M. Sammouda and M. Belcadi, Simulation and prediction of the orientation of short fibers polypropylene injected into a matrix with the imaging technique (HFSP). DOI: 10.17654/0973576322005. [17] J. C. Halpin and J. L. Kardos, Strength of discontinuous reinforced composites: fiber reinforced composites, Polym. Eng. Sci. 18 (1978), 496-504. [18] S. H. McGee, The influence of microstructure on the elastic properties of composite materials, Ph.D. Thesis, University of Delaware, Newark, 1982. [19] I. Modhaffar, K. Gueraoui, S. Men-La-Yakhaf and H. El-Tourroug, The effect of orientation of short fibers in the diluted suspension for thermoplastic, International Review of Mechanical Engineering (IREME) 10(1) (2016), 7-11. [20] A. Clarke, N. Davidson and G. Archenhold, Measurements of fibre direction in reinforced polymer composites, Journal of Microscopy 171(1) (1993), 69-79. [21] C. Eberhardt and A. Clarke, Fibre-orientation measurements in short-glass-fiber composites. Part I: automated, high-angular-resolution measurement by confocal microscopy, Composites Science and Technology 61 (2001), 1389-1400. [22] S. Men-La-Yakhaf, K. Gueraoui and M. Driouich, New numerical and mathematical code reactive mass transfer and heat storage facilities of argan waste, Advanced Studies in Theoretical Physics 8(10) (2014), 485-498. [23] S. Men-La-Yakhaf, K. Gueraoui, A. Maaouni and M. Driouich, Numerical and mathematical modeling of reactive mass transfer and heat storage installations of argan waste, International Review of Mechanical Engineering (IREME) 8(1) (2014), 236-240. [24] N. Brahmia, Contribution à la modélisation de la cristallisation des polymères sous cisaillement: application à l’injection des polymères semi-cristallins, Thèse de Doctorat, École Doctorale Matériaux de Lyon, 2007. [25] F. Chabanane, Etude de transfert thermique lors du moulage par injection de la matière plastique, projet de fins d’étude, Université Mohamed Khaider Biskra, 2004. [26] J. D. Hoffman and J. J. Weeks, Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene, Journal of Research of the National Bureau of Standards, A: Physics and Chemistry 66A (1962), 13-28. [27] J. D. Hoffman and R. L. Miller, Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment, Polymer 38(13) (1997), 3151-3212. [28] M. Zinet, Modélisation de la cristallisation des polymères dans les procédés de plasturgie: quantification des effets thermiques et rhéologiques, Thèse de Doctorat, École Mécanique, Energétique, Génie Civil et Acoustique (MEGA) de Lyon, 2010. [29] Z. Matthieu, Modélisation de la cristallisation des polymères dans les procèdes plasturgie: quantification des effets thermique et rhéologique, Thèse de Doctorat, Institue National des Sciences Appliquées de Lyon, 2010. [30] Adil Bounouar, Kamal Gueraoui, M. Taibi, M. Driouich, A. Rtibi, Y. Belkassmi and G. Zeggwagh, Mathematical and numerical modeling of an unsteady heat transfer within a spherical cavity: laser interaction with human skin, International Review of Civil Engineering (IRECE) 9(5) (2018), 209-217. [31] Moad Mahboub, Kamal Gueraoui and Gérald Debenest, Numerical modeling of mass loss and temperature profiles in the thermal decomposition of bagasse in a fixed rectangular oven, International Review of Mechanical Engineering (IREME) 13(4) (2019), 275-284. [32] H. Benbih, Kamal Gueraoui, M. Driouich, M. Taibi and M. Saidi Hassani Alaoui, Modeling and numerical simulation of the motion of a solid particle in a fluid flow, International Review of Mechanical Engineering (IREME) 11(9) (2017), 677-682. [33] Moad Mahboub, Kamal Gueraoui, S. Men-La-Yakhaf, M. Taibi, M. Driouich, A. Mohcine and I. Aberdane, Mathematical and numerical modeling for energy valorization of sugarcane, International Review of Civil Engineering (IRECE) 9(5) (2018), 194-201. [34] J. Sabbar, Kamal Gueraoui, M. Taibi, S. Men-La-Yakhaf and S. Ouhimmou, Numerical solution of the pollutant’s penetration in a specific soil in Tensift (South Morocco), International Review of Mechanical Engineering (IREME) 13(7) (2019), 390-401. [35] J. Sabbar, Kamal Gueraoui and S. Men-La-Yakhaf, Numerical modelization of the pollutant’s insertion in a soil of South Morocco, International Review of Civil Engineering (IRECE) 11(1) (2020), 18-25. [36] Remili Sadia and Azzi Abbes, Steady and transient numerical solutions for turbulent fountain jet, International Review of Mechanical Engineering (IREME) 14(3) (2020), 177-184.
|