Keywords and phrases: analytical study, flat plate solar collector, nanofluid, natural heat convection, heat transfer enhancement, parametric study.
Received: April 16, 2022; Revised: May 24, 2022; Accepted: June 13, 2022; Published: July 15, 2022
How to cite this article: Rama Chandra Panda, Lipika Panigrahi, Sudhansu S. Sahoo and Ashok K. Barik, Nanofluid effect in the vertical pipe with heat input concerning flat plate solar collector: an analytical analysis, JP Journal of Heat and Mass Transfer 28 (2022), 71-84. http://dx.doi.org/10.17654/0973576322035
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, San Francisco, USA, 1995, pp. 99-105. [2] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001), 718-720. [3] S. K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003), 567-574. [4] G. Sreedevi, R. Raghavendra Rao, A. J. Chamkha and D. R. V. Prasada Rao, Mixed convective heat and mass transfer flow of nanofluids in concentric annulus, Procedia Engineering 127 (2015), 1048-1055. [5] N. Putra, W. Roetzel and S. K. Das, Natural convection of nanofluids, Heat and Mass Transfer 39(8-9) (2003), 775-784. [6] M. Usman, M. Hamid, T. Zubair, R. U. Haq and W. Wang, CuAl2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM, International Journal of Heat and Mass Transfer 126 (2018), 1347-1356. [7] Anurag and A. K. Singh, Role of heat source/sink in transient free convective flow through a vertical cylinder filled with a permeable medium: an analytical approach, Heat Transfer 50 (2021), 3154-3175. [8] Anurag, A. K. Singh, P. Chandran and N. C. Sacheti, Effect of Newtonian heating/cooling on free convection in an annular permeable region in the presence of heat source/sink, Heat Transfer 50 (2021), 712-732. [9] B. Widodo, D. K. Arif, D. Aryany, N. Asiyah, F. A. Widjajati and Kamiran, The effect of magneto-hydrodynamic nanofluid flow through porous cylinder, AIP Conference Proceedings 1867 (2017), 020069. [10] B. K. Jha, M. O. Oni and B. Aina, Steady fully developed mixed convection flow in a vertical micro-concentric-annulus with heat-generating/absorbing fluid: an exact solution, Ain Shams Engineering Journal 9 (2018), 1289-1301. [11] L. Panigrahi, J. P. Panda, D. Kumar and S. S. Sahoo, Analytical investigation of polar fluid flow with induced magnetic field in concentric annular region, Heat Transfer 49 (2020), 3943-3957. [12] M. S. Pervin, M. M. T. Hossain and M. Hasanuzzaman, Similarity solutions of unsteady mixed convective boundary layer flow above a horizontal porous surface with the effect of suction, JP Journal of Heat and Mass Transfer 26 (2022), 111-142. [13] M. E. Hamma, M. Taibi, A. Rtibi, K. Gueraoui and M. Bernatchou, Effect of magnetic field on thermosolutal convection in a cylindrical cavity filled with nanofluid, taking into account Soret and Dufour effects, JP Journal of Heat and Mass Transfer 26 (2022), 1-26. [14] F. S. Javadi, R. Saidur and M. Kamalisarvestani, Investigating performance improvement of solar collectors by using nanofluids, Renewable and Sustainable Energy Reviews 28 (2013), 232-245.
|