Keywords and phrases: numerical simulation, droplet, T-junction, microfluidic.
Received: May 4, 2022; Accepted: June 7, 2022; Published: July 15, 2022
How to cite this article: Trong-Hy Tran, Thanh-Long Le, Duc-Thong Hong and Tran-Phu Nguyen, The effect of inlet velocities on the droplet size in T-junction microfluidic devices, JP Journal of Heat and Mass Transfer 28 (2022), 1-14. http://dx.doi.org/10.17654/0973576322030
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. Shahidian, M. Ghassemi, J. Mohammadi and M. Hashemi, Application of microfluidics in cancer treatment, Bio-Engineering Approaches to Cancer Diagnosis and Treatment, Elsevier, 2020, pp. 219-250. [2] M. Rabiee, N. N. Ghasemnia, N. Rabiee and M. Bagherzadeh, Microfluidic devices and drug delivery systems, Microfluidic Devices and Drug Delivery Systems, Academic Press, 2021, pp. 153-186. [3] A. Dewan, J. Kim, R. H. McLean, S. A. Vanapalli and M. N. Karim, Growth kinetics of microalgae in microfluidic static droplet arrays, Biotechnology and Bioengineering 109(12) (2012), 2987‐2996. [4] H. Song, J. D. Tice and R. F. Ismagilov, A microfluidic system for controlling reaction networks in time, Angewandte Chemie 115(7) (2003), 792‐796. [5] C. Cramer, P. Fischer and E. J. Windhab, Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59 (2004), 3045-3058. [6] A. Gupta and R. Kumar, Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect, Phys. Fluids 22 (2010), 122001. [7] A. Bedram, A. E. Darabi and A. Moosavi, Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sized droplets in micro- and nano-fluidic systems, ASME J. Fluids Eng. 137 (2015), 031202. [8] P. A. Romero and A. R. Abate, Flow focusing geometry generates droplets through a plug and squeeze mechanism, Lab Chip 12 (2012), 5130-5132. [9] A. S. Opalski, T. S. Kaminski and P. Garstecki, Droplet microfluidics as a tool for the generation of granular matters and functional emulsions, KONA Powder Part. J. 36 (2019), 50-71. [10] T. Glawdel, C. Elbuken and C. L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime, I. Experimental observations, Physical Review E 85 (2012), 016322. [11] D. Huang, K. Wang, Y. Wang, H. Sun, X. Liang and T. Meng, Precise control for the size of droplet in T-junction microfluidic based on iterative learning method, J. Franklin Inst. 357 (2020), 5302-5316. [12] T. Glawdel, C. Elbuken and C. L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime, II. Modeling, Physical Review E 85 (2012), 016323. [13] E. C. Santos, A. Ładosz, G. M. Maggioni, P. R. Rohr and M. Mazzotti, Characterization of shapes and volumes of droplets generated in PDMS T-junctions to study nucleation, Chemical Engineering Research and Design 138 (2018), 444-457. [14] M. Y. A. Jamalabadi, M. D. Shirazi, Ali Kosar and M. S. Shadloo, Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction, Theoretical and Applied Mechanics Letters 7 (2017), 243-251. [15] J. Xu, S. Li, J. Tan and G. Luo, Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluidics and Nanofluidics 5(6) (2008), 711-717. [16] E. Olsson and G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005), 225-246. [17] T.-L. Le, J.-C. Chen, B.-C. Shen, F.-S. Hwu and H.-B. Nguyen, Numerical investigation of the thermocapillary actuation behavior of a droplet in a microchannel, Int. J. Heat Mass Transfer 83 (2015), 721-730. [18] T.-L. Le, J.-C. Chen, F.-S. Hwu and H.-B. Nguyen, Numerical study of the migration of a silicone plug inside a capillary tube subjected to an unsteady wall temperature gradient, Int. J. Heat Mass Transfer 97 (2016), 439-449. [19] T.-L. Le, J.-C. Chen and H.-B. Nguyen, Numerical study of the thermocapillary droplet migration in a microchannel under a blocking effect from the heated wall, Appl. Thermal Eng. 122 (2017), 820-830. [20] T.-L. Le, J.-C. Chen and H.-B. Nguyen, Numerical investigation of the forward and backward thermocapillary motion of a water droplet in a microchannel by two periodically activated heat sources, Numerical Heat Transfer, Part A: Applications 79(2) (2020), 146-162. [21] T.-L. Le and N. T. Tien, A CFD study on hydraulic and disinfection efficiencies of the body sterilization chamber, Annals of the Romanian Society for Cell Biology 25(2) (2021), 3998-4004. [22] T.-L. Le and T. D. Hong, Computational fluid dynamics study of the hydrodynamic characteristics of a torpedo-shaped underwater glider, Fluids 6 (2021), 252. [23] K. Loizou, V.-L. Wong and B. Hewakandamby, Examining the effect of flow rate ratio on droplet generation and regime transition in a microfluidic T-junction at constant capillary numbers, Inventions 3(3) (2018), 54. [24] M. N. Kashid, A. Renken and L. Kiwi-Minsker, CFD modelling of liquid-liquid multiphase microstructured reactor: slug flow generation, Chemical Engineering Research and Design 88(3) (2010), 362-368.
|