Keywords and phrases: Blasius function, leaping Taylor’s series, slip flow, Newton-Raphson method.
Received: May 8, 2022; Accepted: June 14, 2022; Published: June 18, 2022
How to cite this article: S. Anil Lal and Milin Martin, Accurate benchmark results of Blasius boundary layer problem using a leaping Taylor’s series that converges for all real values, Advances and Applications in Fluid Mechanics 28 (2022), 41-58. http://dx.doi.org/10.17654/0973468622004
References:
[1] H. Blasius, Grenzschichten in Flussigkeiten mit Kleiner Reibung, Zeitschrift für angewandte Mathematik und Physik 56 (1908), 1-37. [2] H. Blasius and K. Toepfer, Grenzschichten in Flussigkeiten mit Kleiner Reibung, Z. Math Phys. 60 (1912), 397-398. [3] J. P. Boyd, The Blasius function: computations before computers, the value of tricks, Undergraduate Projects and Open Research Problems, SIAM Review 50 (2008), 791-804. [4] J. P. Boyd, The Blasius function in the complex plane, Experimental Mathematics 8 (1999), 381-394. [5] S. Catal, Some of semi analytical methods for Blasius problem, Applied Mathematics 3 (2012), 724-728. [6] R. Cortell, Numerical solutions of the classical Blasius flat-plate problem, Applied Mathematics and Computation 170 (2005), 706-710. [7] V. S. Erturk and S. Momani, Numerical solutions of two forms of Blasius equation on a half-infinite domain, Journal of Algorithms and Computational Technology 2 (2008), 359-370. [8] F. M. White and J. Majdalani, Viscous Fluid Flow, Vol. 3, McGraw-Hill New York, 2006. [9] K. Töpfer, Bemerkung zu dem Aufsatz von H. Blasius: Grenzshicten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys. 60 (1912), 397-398. [10] R. Fazio, Numerical transformation methods: Blasius Problem and its variants, Applied Mathematics and Computation 215 (2009), 1513-1521. [11] T. Fang, W. Liang and C. F. Lee, A new solution branch for the Blasius equation-A shrinking sheet problem, Computers & Mathematics with Applications 56 (2008), 3088-3095. [12] L. Howarth, On the solutions of the laminar boundary layer equations, Proceedings of Royal Society London: Applied Mathematics 164 (1938), 547-579. [13] Z. A. Majid and P. P. See, Study of predictor corrector block method via multiple shooting to Blasius and Sakiadis flow, Applied Mathematics and Computation 314 (2017), 469-483. [14] K. Abbaoui and Y. Cherruault, New ideas for proving convergence of decomposition methods, Computers and Mathematics with Applications 29 (1995), 103-108. [15] L. Wang, A new algorithm for solving classical Blasius equation, Applied Mathematics and Computation 157 (2004), 1-9. [16] I. Hashim, Comments on a new algorithm for solving classical Blasius equation by L. Wang, Applied Mathematics and Computation 176 (2006), 700-703. [17] J. P. Boyd, Pade Approximant Algorithm for solving nonlinear ordinary differential equation boundary value problem on an unbounded domain, Computers in Physics 11 (1997), 299-303. [18] I. Andrianov and A. Shatrov, Pade approximation to solve the problems of aerodynamics and heat transfer in the boundary layer, Intech Open, 2020, pp. 1-18. [19] L. Yu and C. K. Chen, The solution of the Blasius equation by the differential transformation method, Mathematical and Computer Modelling 28 (1998), 101-111. [20] J. K. Zhou, Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, 1986. [21] W. F. Ames, Nonlinear Ordinary Differential Equations in Transport Processes, Vol. 42, Academic Press, 1968. [22] S. A. Lal and N. M. Paul, An accurate Taylors series solution with high radius of convergence for the Blasius function and parameters of asymptotic variation, Journal of Applied Fluid Mechanics 7 (2014), 557-564. [23] A. Arikoglu and I. Ozkol, Inner-outer marching solution of Blasius equation by DTM, Aircraft Engineering and Aerospace Technology: An International Journal 77 (2005), 298-301. [24] A. Arikoglu and I. Ozkol, Solution of boundary value problems for integro-differential equations by using differential transform method, Applied Mathematics and Computation 168 (2005), 1145-1158. [25] N. Bildik and A. Konuralp, The use of variational iteration method, differential transform method and adomian decomposition method for solving different types of nonlinear partial differential equations, International Journal of Nonlinear Sciences and Numerical Simulation 7 (2011), 65-70. [26] A. Arikoglu and I. Ozkol, Solutions of integral and integro-differential equations by using differential transform method, Computers and Mathematics with Applications 56 (2008), 2411-2417. [27] M. J. Martin and I. D. Boyd, Blasius Boundary Layer solution with slip flow conditions, AIP Conference Proceedings, 585 2001, pp. 518-523.
|