Keywords and phrases: discrete fractional calculus, Lyapunov inequality, Green’s function, eigenvalue problem.
Received: January 30, 2022; Revised: April 11, 2022; Accepted: May 4, 2022; Published: June 4, 2022
How to cite this article: D. Abraham Vianny, R. Dhineshbabu and A. George Maria Selvam, Lyapunov type inequalities and their applications on an eigenvalue problem for discrete fractional order equation with a class of boundary conditions, Advances in Differential Equations and Control Processes 28 (2022), 55-71. http://dx.doi.org/10.17654/0974324322024
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, NY, 1993. [2] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Amsterdam, 2006. [4] A. Alkhazzan, P. Jiang, D. Beleanu, H. Khan and Aziz Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Methods Appl. Sci. 41 (2018), 1-14. [5] A. Shah, R. Ali Khan, A. Khan, H. Khan and J. F. Gomez-Aguilar, Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution, Math. Methods Appl. Sci. 44 (2021), 1628 1638. [6] J. F. Gomez Aguilar, T. C. Fraga, T. Abdeljawad, A. Khan and H. Khan, Analysis of fractal-fractional malaria transmission model, Fractals 28(8) (2020), 1-25. [7] H. Khan, J. F. Gomez Aguilar, T. Abdeljawad and A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra intergro-differential equation, Fractals 28(8) (2020), 1-9. [8] J. R. Wang, K. Shah and A. Ali, Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci. 41 (2018), 2392-2402. [9] Z. A. Khan, R. Gul and K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Spaces 2021, Art. ID 8331731, 11 pp. [10] Z. A. Khan and K. Shah, Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces 2021, Art. ID 8734535, 8 pp. [11] J. Sabatier, P. Lanusse, P. Melchior and A. Oustaloup, Fractional Order Differentiation and Robust Control Design, Springer, 2015. [12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, 2010. [13] W. T. Reid, A generalized Liapunov inequality, J. Differential Equations 13 (1973), 182-196. [14] C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, New York, 2015. [15] J. Alzabut, A. G. M. Selvam, R. Dhineshbabu and M. K. A. Kaabar, The existence, uniqueness, and stability analysis of the discrete fractional three-point boundary value problem for the elastic beam equation, Symmetry 13 (2021), 1-18. [16] C. S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Differ. Equ. 5(2) (2010), 195-216. [18] C. S. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Comput. Math. Appl. 61(2) (2011), 191-202. [19] M. Rehman, F. Iqbal and A. Seemab, On existence of positive solutions for a class of discrete fractional boundary value problems, Springer International Publishing, Positivity 21 (2017), 1173-1187. [20] A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid and M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl. 221 (2020), 1-19. [21] A. G. M. Selvam and R. Dhineshbabu, Existence and uniqueness of solutions for a discrete fractional boundary value problem, Int. J. Appl. Math. 33(2) (2020), 283 295. [22] A. G. M. Selvam and D. Abraham Vianny, Existence and uniqueness of solutions for boundary value problem of fractional order difference equations, Journal of Physics: Conference Series 1377 (2019), 1-7. [23] A. G. M. Selvam and D. Abraham Vianny, Existence and uniqueness of solutions for discrete three point boundary value problem with fractional order, Advances in Mathematics: Scientific Journal 9(8) (2020), 6411-6423. [24] A. G. M. Selvam and D. Abraham Vianny, Existence and uniqueness of solutions for three point boundary value problem of fractional order difference equations, AIP Conference Proceedings 2277 (2020), 1-9. [25] A. M. Lyapunov, Probleme general de la stabilite du mouvement, Ann. Fac. Sci. Univ. Toulouse 2 (1907), 203-407. [26] D. Cakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput. 216 (2010), 368-373. [27] S. S. Cheng, A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J. 12 (1983), 105-112. [28] S. S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math. 23 (1991), 25-41. [29] S. Clark and D. Hinton, A Lyapunov inequality for linear Hamiltonian systems, Math. Inequal. Appl. 1 (1998), 201-209. [30] H. D. Liu, Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities, Adv. Differ. Equ. 231 (2018), 1-14. [31] Y. Wang, Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions, Appl. Math. Lett. 25 (2012), 2375-2380. [32] Q. M. Zhang and X. H. Tang, Lyapunov inequalities and stability for discrete linear Hamiltonian systems, Appl. Math. Comput. 218 (2011), 574-582. [33] N. G. Abuj and D. B. Pachpatte, Lyapunov type inequality for discrete fractional boundary value problem, 1 (2018), 1-8. arXiv: 1802.01349v1 [math.CA]. [34] M. Cui, J. Xin, X. Huang and C. Houx, Lyapunov-type inequality for fractional order difference equations, Global Journal of Science Frontier Research (F) 16 (2016), 1-10. [35] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal. 16 (2013), 978-984. [36] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl. 412 (2014), 1058-1063. [37] R. A. C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc. 5 (2015), 87-92. [38] M. Jleli, L. Ragoub and B. Samet, A Lyapunov-type inequality for a fractional differential equation under a Robin boundary condition, J. Funct. Spaces 2015, Art. ID 468536, 5 pp. [39] A. G. M. Selvam and R. Dhineshbabu, A discrete fractional order Lyapunov type inequality for boundary value problem, American International Journal of Research in Science, Technology, Engineering and Mathematics 1 (2019), 1-4. [40] F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, International Journal of Difference Equations 2(2) (2007), 165-176. [41] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62(3) (2011), 1602-1611. [42] F. M. Atici and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17(4) (2011), 445-456. [43] D. G. Duffy, Green’s Functions with Applications, Taylor and Francis Group, London, New York, 2015. [44] Y. A. Melnikov and V. N. Borodin, Green’s Functions, Springer Nature, New York, USA, 2017.
|