Keywords and phrases: Nicholson’s blowflies model, positive periodic solution, multiple time delays, Krasnoselskii’s fixed point theorem.
Received: March 11, 2022; Accepted: April 25, 2022; Published: June 2, 2022
How to cite this article: Yidi Zhao, Shaowen Liu, Yuqi Cao, Qing Ma and Yan Yan, Multiplicity of positive periodic solutions for a Nicholson-type blowflies model with nonlinear decimation terms, Advances in Differential Equations and Control Processes 28 (2022), 37-53. http://dx.doi.org/10.17654/0974324322023
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] K. Akbarzadeh, A. Saghafipour and N. Jesri et al., Spatial distribution of necrophagous flies of infraorder muscomorpha in Iran using geographical information system, J. Med. Entomol. 55 (2018), 1071-1085. http://doi.org/10.1093/jme/tjy098 [2] P. Amster and A. Déboli, Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term, Appl. Math. Lett. 25 (2012), 1203-1207. https://doi.org/10.1016/j.aml.2012.02.040 [3] L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential equations revisited: Main results and open problems, Appl. Math. Model. 34 (2010), 1405-1417. https://doi.org/10.1016/j.apm.2009.08.027 [4] D. Calibeo-Hayes, S. S. Denning and S. M. Stringham et al., Mechanical transmission of turkey coronavirus by domestic houseflies (musca domestica linnaeaus), Avian. Dis. 47 (2003), 149-153. https://doi.org/10.1637/0005-2086(2003)047[0149:mtotcb]2.0.co;2 [5] D. F. Cook, S. C. Voss and J. T. D. Finch et al., The role of flies as pollinators of horticultural crops: an Australian case study with worldwide relevance, Insects, 11 (2020), 341. https://doi.org/10.3390/insects11060341 [6] H. S. Ding and J. J. Nieto, A new approach for positive almost periodic solutions to a class of Nicholson’s blowflies model, J. Comput. Appl. Math. 253 (2013), 249-254. https://doi.org/10.1016/j.cam.2013.04.028 [7] L. Duan and L. H. Huang, Pseudo almost periodic dynamics of delay Nicholson’s blowflies model with a linear harvesting term, Math. Method. Appl. Sci. 38 (2015), 1178-1189. https://doi.org/10.1002/mma.3138 [8] W. Gurney, S. Blyth and R. Nisbet, Nicholson’s blowflies (revisted), Nature 287 (1980), 17-21. https://doi.org/10.1038/287017a0 [9] M. R. S. Kulenovic, G. Ladas and Y. S. Sficas, Global attractivity in Nicholson’s blowflies, Appl. Anal. 43 (1992), 109-124. https://doi.org/10.1080/00036819208840055 [10] J. W. Li and C. X. Du, Existence of positive periodic solutions for a generalized Nicholson’s blowflies model, J. Comput. Appl. Math. 221 (2008), 226-233. https://doi.org/10.1016/j.cam.2007.10.049 [11] F. Long, Positive almost periodic solutions for a generalized Nicholson’s blowflies model with a linear harvesting term, Nonlinear Anal. Real World Appl. 13 (2012), 686-693. https://doi.org/10.1016/j.nonrwa.2011.08.009 [12] F. Long and M. Q. Yang, Positive periodic solutions of delayed Nicholson’s blowflies model with a linear harvesting term, Electron J. Qual. Theo. 41 (2011), 1-11. https://doi.org/10.14232/ejqtde.2011.1.41 [13] G. R. Mullen and L. A. Durden, Medical and veterinary entomology, 3rd ed., London: Academic Press, 2019. [14] L. A. Reilly, J. FavachoII and L. M. Garcez, Preliminary evidence that synanthropic flies contribute to the transmission of trachoma-causing Chlamydia trachomatis in Latin America, Cad. Saude. Publica. 23 (2007), 1682-1688. https://doi.org/10.1590/s0102-311x2007000700020 [15] S. H. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson’s blowflies model, Math. Comput. Model. 35 (2002), 719-731. https://doi.org/10.1016/s0895-7177(02)00043-2 [16] A. Sanei-Dehkordi, M. Soleimani-Ahmadi, A. Cheshmposhan and K. Akbarzadeh, Biodiversity of medically important calyptratae flies (diptera:schizophora) in hospitals in the northern coastline of the persian gulf, Iran, J. Med. Entomol. 57 (2020), 766-771. http://doi.org/10.1093/jme/tjz222 [17] J. W. H. So and J. S. Yu, On the stability and uniform persistence of a discrete model of Nicholson’s blowflies, Indian J. Med. Res. 193 (1995), 233-244. https://doi.org/10.1006/jmaa.1995.1231 [18] R. Srinivasan, P. Jambulingam, K. Gunasekaran and P. Basker, Abundance & distribution of muscoid flies in tsunami-hit coastal villages of southern India during post-disaster management period, Indian J. Med. Res. 129 (2009), 658 664. [19] J. Sugie, Y. Yan and M. Z. Qu, Effect of decimation on positive periodic solutions of discrete generalized Nicholson’s blowflies models with multiple time varying delays, Commun. Nonlinear. Sci. Numer. Simulat. 97 (2021), 15. https://doi.org/10.1016/j.cnsns.2021.105731 [20] J. K. Tomberlin, T. L. Crippen and A. M. Tarone et al., A review of bacterial interactions with blow flies (diptera:calliphoridae) of medical, veterinary, and forensic importance, Ann. Entomol. Soc. Am. 110 (2017), 19-36. https://doi.org/10.1093/aesa/saw086 [21] Y. Yang, R. Zhang, C. H. Jin and J. X. Yin, Existence of time periodic solutions for the Nicholson’s blowflies model with Newtonian diffusion, Math. Method. Appl. Sci. 33 (2010), 922-934. https://doi.org/10.1002/mma.1228 [22] W.-R. Zhao, C. M. Zhu and H. P. Zhu, On positive periodic solution for the delay Nicholson’s blowflies model with a harvesting term, Appl. Math. Model. 36 (2012), 3335-3340. https://doi.org/110.1016/j.apm.2011.10.011
|