Keywords and phrases: modeling, transport of pollutants, rivers, environmental problems, finite volume, Gauss-Seidel method.
Received: January 17, 2022; Revised: May 4, 2022; Accepted: May 12, 2022; Published: May 31, 2022
How to cite this article: M. Ghani, K. Gueraoui, M. Cherraj, M. Taibi and S. Men-La-Yakhaf, Two-dimensional study of the conveyance of pollutants into homogeneous and turbulent-free surface flows, JP Journal of Heat and Mass Transfer 27 (2022), 147-162. http://dx.doi.org/10.17654/0973576322029
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] T. Tsujimoto, T. Okada and K. Kontani, Turbulent structure of open-channel flow over flexible vegetation, Progressive Report, Hydraulic Laboratory, Kanazawa University, 1993. [2] Y. Shimizu and T. Tsujimoto, Numerical analysis of turbulent open-channel flow over vegetation layer using a k- turbulence model, Journal of Hydroscience and Hydraulic Engineering 11(2) (1994), 57-67. [3] F. Lopez and M. H. Garcia, Mean flow and turbulence structure of open channel flow through non-emergent vegetation, Journal of Hydraulic Engineering 127 (2001), 392-402. [4] J. Jarvela, Effect of submerged flexible vegetation on flow structure and resistance, Journal of Hydrology 307(1-4) (2005), 233-241. [5] F. Lopez and M. Garcia, Open-channel flow through simulated vegetation: suspended sediment transport modeling, Water Resources Research 34(9) (1998), 2341-2352. [6] S. Rodrigues, Jean-Gabriel Bréhéret, J.-J. Macaire, F. Moatar, D. Nistoran and P. Jugé, Flow and sediment dynamics in the vegetated secondary channels of an anabranching river: the Loire river (France), Sedimentary Geology 186 (2006), 89-109. [7] C. Liu and Y.-M. Shen, Flow structure and sediment transport with impacts of aquatic vegetation, Journal of Hydrodynamics 20(4) (2008), 461-468. [8] W. Wu and Z. He, Effects of vegetation on flow conveyance and sediment transport capacity, International Journal of Sediment Research 23(3) (2009), 247-259. [9] Z. Sirabahenda, Modélisation numérique du transport des sédiments en suspension dans une rivière en aménagement: Cas de la rivière-aux-sables au Québec, Département des Génies Civil, Géologiques et des mines École Polytechnique de Montréal, Mémoire Demaîtrise, Université de Montréal, 2012. [10] F. Ganthy, A. Sottolichio and R. Verney, Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d’Arcachon, France), Journal of Marine Systems 109-110 (2013), S233-S240. [11] J. Jarvela, Effect of submerged flexible vegetation on flow structure and resistance, Journal of Hydrology 307(1-4) (2005), 233-241. [12] X. Xie, Z. Huang, J. Wang and Z. Xie, The impact of solar radiation and street layout on pollutant dispersion in street canyon, Building and Environment 40 (2005), 201-212. [13] M. Y. Tsai and K. S. Chen, Measurements and three-dimensional modeling of air pollutant dispersion in an urban street canyon, Atmospheric Environment 38 (2004), 5911-5924. [14] L. Simon, Evaluation of numerical schemes for advection-dispersion modeling, La Houille Blanche 3 (1990), 225-230. [15] L. Simon, Two-dimensional Hydraulic Model, PIREN SEINE Groupe, 1990, p. 58. [16] P. Rigaudière, Simulations of pollution transfers on the Cher river, Report by Cemagref Lyon Diren Cergrenne, 1992, p. 58. [17] X. Li, Y. J. Shang, Z. L. Chen, X. F. Chen, Y. Niu, M. Yang and Y. Zhang, Study of spontaneous combustion mechanism and heat stability of sulfide minerals powder based on thermal analysis, Powder Technology 309 (2017), 68-73. [18] M. Bouterra, A. Elcafsi, A. H. Laatar, A. Belghith and P. Le Quéré, Bidimensional numerical simulation of a turbulent flow stratified around an obstacle, Int. J. Thermal Sciences 41 (2002), 281-293. [19] C. J. Weschler, Chemical reactions among indoor pollutants: what we’ve learned in the new millennium, Indoor Air 14 (2004), 184-194. [20] V. Casulli and G. S. Stelling, Numerical simulation of 3D quasi-hydrostatic, free-surface flows, Journal of Hydraulic Engineering 7 (1998), 678-686. [21] K. A. Ramazan, D. Syomin and B. J. Finlayson-Pitts, The photochemical production of HONO during the heterogeneous hydrolysis of NO2, Physical Chemistry Chemical Physics 6 (2004), 3836-3843. [22] O. Poupard, P. Blondeau, V. Iordache and F. Allard, Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools, Atmospheric Environment 39 (2005), 2071-2080. [23] P. A. Nielsen, The influence of ageing and air change on the emission rate of gases and vapors from some building materials, Proceedings of the CLIMA 2000 World Congress on Heating, Ventilating, and Air-conditioning, Copenhagen, 4, 1985, pp. 207-213. [24] A. O. Demuren and W. Rodi, Side discharges into open channels: mathematical model, Journal of Hydraulic Engineering 109(12) (1983), 1707-1722. [25] J. B. Faure and N. Buil, 3D simulation of pollutant dispersion in rivers, Hydroinformatics’98, Copenhagen, 1998. [26] B. Gay, J. B. Faure and N. Buil, Modelling of certain types of hydraulic and air pollution, CIMASI’98, Casablanca, 1998. [27] S. K. Sinha, F. Sotiropoulos and A. J. Odgaard, 3D numerical model for flow through natural rivers, Journal of Hydraulic Engineering 1 (1998), 13-24. [28] J. Sabbar, Kamal Gueraoui, M. Taibi, S. Men-La-Yakhaf and S. Ouhimmou, Numerical solution of the pollutant’s penetration in a specific soil in Tensift (South Morocco), International Review of Mechanical Engineering (IREME) 13 (2019), 390-401. [29] S. Men-La-Yakhaf, K. Gueraoui, A. Maaouni and M. Driouich, Numerical and mathematical modeling of reactive mass transfer and heat storage installations of argan waste, International Review of Mechanical Engineering (IREME) 8 (2014), 236-240. [30] K. Gueraoui, A. Hammoumi and G. Zeggwagh, Pulsed flows of inelastic fluids in porous and anisotropic deformable pipes, C. R. Acad. Sci., Paris 323, 1996, pp. 825-832. [31] A. Ghouli, K. Gueraoui, M. Walid, I. Aberdane, A. El Hammoumi, M. Kerroum, G. Zeggwagh and Y. Haddad, Numerical study of evolution process of pollutant propagation in a homogeneous porous medium unsaturated, International Review of Mechanical Engineering (IREME) 3(3) (2009), 358-362.
|