Keywords and phrases: concrete, recycled aggregate, thermal properties, temperature, numerical modeling.
Received: October 5, 2021; Revised: December 12, 2021; Accepted: February 23, 2022; Published: May 31, 2022
How to cite this article: Sara Belarouf, Abdelkrim Moufakkir, Khadija Annaba, Abderrahim Samaouali and Hubert Rahier, Experimental and numerical thermal properties of concrete materials modified with construction waste for building construction use, JP Journal of Heat and Mass Transfer 27 (2022), 113-132. http://dx.doi.org/10.17654/0973576322027
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Sara Belarouf, A. Samaouali, K. Gueraoui and H. Rahier, Mechanical properties of concrete with recycled concrete aggregates, International Review of Civil Engineering (IRECE) 11(6) (2020) .doi: https://doi.org/10.15866/irece.v11i6.18478. [2] H. L. T. Chen, T. Yen and K. H. Chen, Use of building rubbles as recycled aggregates, Cement and Concrete Research 33 (2003), 125-132. [3] L. Evangelista and J. de Brito, Mechanical behavior of concrete made with fine recycled concrete aggregates, Cement and Concrete Composites 29(5) (2007), 397- 401. [4] I. Martínez-Lage, F. Martínez-Abella, C. Váquez-Herrero and J. L. Peréz-Ordónez, Properties of plain concrete made with mixed recycled coarse aggregate, Construction and Buildings Materials 37 (2012), 171-176. [5] J. M. Khatib, Properties of concrete incorporating fine recycled aggregate, Cement and Concrete Research 35(4) (2005), 763-769. [6] J. Yang, Q. Du and Y. Bao, Concrete with recycled concrete aggregate and crushed clay bricks, Construction and Building Materials 25(4) (2011), 1935-1945. [7] I. B. Topcu and S. Sengel, Properties of concretes produced with waste concrete aggregate, Cement and Concrete Research 34(8) (2004), 1307-1312. [8] I. B. Topcu, Physical and mechanical properties of concretes produced with waste concrete, Cement and Concrete Research 27(12) (1997), 1817-1823. [9] P. J. Nixon, Recycled concrete as an aggregate for concrete - a review, Material and Structures 11 (1978), 371. [10] Ashraf M. Wagih, Hossam Z. El-Karmoty, Magda Ebid and Samir H. Okba, Recycled construction and demolition concrete waste as aggregate for structural concrete, HBRC Journal 9 (2013), 193-200. [11] Asif Husain and Majid Matouq Assas, Utilization of demolished concrete waste for new construction, International Journal of Civil and Environmental Engineering 7(1) (2013), 37-42. [12] Mirjana Malešev, Vlastimir Radonjanin and Snežana Marinković, Recycled concrete as aggregate for structural concrete production, Sustainability 2 (2010), 1204-1225. doi: 10.3390/su2051204. [13] G. Yadhu and S. Aiswarya Devi, An innovative study on reuse of demolished concrete waste, Journal of Civil and Environmental Engineering 5 (2015). doi: 10.4172/2165-784X.1000185. [14] Leopold Mbereyaho, Jean Paul Ntitanguranwa, Kabano James and Gasingwa Noel, Reuse of construction and demolished concrete waste in producing strong and affordable concrete blocks, Rwanda Journal of Engineering, Science, Technology and Environment 1 (2018). [15] NF EN 993-15, Methods of test for dense shaped refractory products - Part 15: determination of thermal conductivity by the hot-wire (parallel) method, October 2005. [16] Moad Mahboub, Kamal Gueraoui and Gérald Debenest, Numerical modeling of mass loss and temperature profiles in the thermal decomposition of bagasse in a fixed rectangular oven, International Review of Mechanical Engineering (IREME) 13(4) (2019). doi: https://doi.org/10.15866/ireme.v13i4.17033. [17] Moad Mahboub, Kamal Gueraoui, S. Men-La-Yakhaf, M. Taibi, M. Driouich, A. Mohcine and I. Aberdane, Mathematical and numerical modeling for energy valorization of sugarcane, International Review of Civil Engineering (IRECE) 9(5) (2018). doi: https://doi.org/10.15866/irece.v9i5.10864. [18] M. Driouich, K. Gueraoui, Y. M. Haddad, A. E. Hammoumi, M. Kerroum and O. F. Fehri, Mathematical modeling of nonpermanent flows of molten polymers, International Review of Mechanical Engineering (IREME) 4(6) (2010), 689-694. [19] M. Driouich, K. Gueraoui, M. Sammouda and Y. M. Haddad, The effect of the rheological characteristics of the molten polymer on its flow in rigid cylindrical tubes, Adv. Studies Theor. Phys. 6(12) (2012), 569-586. [20] G. A. Khoury, Concrete spalling assessment methodologies and polypropylene fibre toxicity analysis in tunnel fires, Structural Concrete 9(1) (2008), 11-18. [21] V. K. R. Kodur and M. A. Sultan, Effect of temperature on thermal properties of high-strength concrete, Journal of Materials in Civil Engineering 15(2) (2003), 101-107. [22] M. G. Van Geem, J. Gajda and K. Dombrowski, Thermal properties of commercially available high-strength concretes, Cement, Concrete and Aggregates 19(1) (1997), 38-54. [23] X. Yu, X. Zha and Z. Huang, The influence of spalling on the fire resistance of RC structures, Advanced Materials Research 255-260 (2011), 519-523. [24] G. A. Khoury, Concrete spalling assessment methodologies and polypropylene fibre toxicity analysis in tunnel fires, Structural Concrete 9(1) (2008), 11-18. [25] P. Morabito, Measurement of the thermal properties of different concretes, High Temp. High Pressure 21 (1989), 51-59. [26] Kook-Han Kim, Sang-Eun Jeon, Jin-Keun Kim and Sungchul Yang, An experimental study on thermal conductivity of concrete, Cement and Concrete Research 33 (2003), 363-371. [27] María Fenollera, José Luis Míguez, Itziar Goicoechea and Jaime Lorenzo, Experimental study on thermal conductivity of self-compacting concrete with recycled aggregate, Materials 8 (2015), 4457-4478. doi: 10.3390/ma8074457. [28] Sara Belarouf, A. Samaouali, Abdelkrim Moufakkir, K. Gueraoui and Rahier Hubert, Thermal behavior of concrete with recycled concrete aggregates on the effect of temperature and composition, JP Journal of Heat and Mass Transfer 21(2) (2020), 167-182. http://dx.doi.org/10.17654/HM021020167. [29] Sara Belarouf, Abdelkrim Moufakkir, A. Samaouali, Hubert Rahier and K. Gueraoui, Chemical mineralogical characterization of concrete with recycled concrete aggregates, JP Journal of Heat and Mass Transfer 22(1) (2021), 35-53. http://dx.doi.org/10.17654/HM022010035. [30] Abdelkrim Moufakkir, Oumaima Nasry, Sara Belarouf, Abderrahim Samaouali, M. Hraita, S. Fertahi and A. Elbouzidi, Chemical-mineralogical characterization of red earth doped with different copper powder contents, JP Journal of Heat and Mass Transfer 22(2) (2021), 151-168. http://dx.doi.org/10.17654/HM022020151. [31] Abdelkrim Moufakkir, Sara Belarouf, H. Sghiouri El Idrissi, A. Samaouali, A. Elbouzidi, Y. El Rhaffari, S. Fertahi and Mohamed Charia, Numerical simulation and experiment of thermal conductivity on red earth doped and reinforced with a metallic substance at different contents, JP Journal of Heat and Mass Transfer 22(2) (2021), 217-230. http://dx.doi.org/10.17654/HM022020217. [32] Abdelkrim Moufakkir, A. Samaouali, A. Elbouzidi, S. El Alami and A. Dinane, Thermophysical characterization of composite clay materials doped by the copper powder according to the temperature, WSEAS Transactions on Environment and Development 16 (2020), 324-329. doi: 10.37394/232015.2020.16.34. [33] Abdelkrim Moufakkir, S. El Alami, Sara Belarouf, H. Soulami, A. Samaouali, B. Kabouchi and A. Famiri, Physical-mechanical characterisation and drying wood of Holm-oak bush from Azrou region – Morocco, JP Journal of Heat and Mass Transfer 21(1) (2020), 151-166. http://dx.doi.org/10.17654/HM021010151.
|