Keywords and phrases: pool boiling, azimuth angle, tube array, passive heat exchanger.
Received: March 2, 2022; Accepted: April 7, 2022; Published: May 28, 2022; Published: May 31, 2022
How to cite this article: Myeong-Gie Kang, Effect of azimuth angle on pool boiling heat transfer of V-type tube array, JP Journal of Heat and Mass Transfer 27 (2022), 13-25. http://dx.doi.org/10.17654/0973576322021
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Shoji, Studies of boiling chaos: a review, Int. J. Heat Mass Transfer 47 (2004), 1105-1128. [2] Y. Liu, X. Wang, X. Meng and D. Wang, A review on tube external heat transfer for passive residual heat removal heat exchanger in nuclear power plant, Appl. Therm. Eng. 149 (2019), 1476-1491. [3] B. U. Bae, B. J. Yun, S. Kim and K. H. Kang, Design of condensation heat exchanger for the PAFS (Passive Auxiliary Feedwater System) of APR+ (Advanced Power Reactor Plus), Annals of Nuclear Energy 46 (2012), 134-143. [4] Y. Liu, X. Wang, Q. Men and X. Meng, Experimental study of heat transfer outside C-shaped tube in water tank, Annals of Nuclear Energy 135 (2020), 1-8. [5] PWR passive plant heat removal assessment, Joint EPRI-CRIEPI Advanced LWR Studies, NP-7080-M, Research Project 2660-51, Prepared by MPR Associates, Inc., 1991. [6] M. H. Chun and M. G. Kang, Effects of heat exchanger tube parameters on nucleate pool boiling heat transfer, ASME Journal of Heat Transfer 120 (1998), 468-476. [7] M. G. Kang, Influence of lower concentrated heat source on pool boiling of horizontal tube, JP Journal of Heat and Mass Transfer 23(1) (2021), 81-93. [8] A. Ustinov, V. Ustinov and J. Mitrovic, Pool boiling heat transfer of tandem tubes provided with the novel microstructure, Int. J. Heat Fluid Flow 32 (2011), 777-784. [9] S. B. Memory, S. V. Chilman and P. J. Marto, Nucleate pool boiling of a TURBO-B bundle in R-113, ASME J. Heat Transfer 116 (1994), 670-678. [10] A. Swain and M. K. Das, A review on saturated boiling of liquids on tube bundles, Heat Mass Transfer 50 (2014), 617-637. [11] Z.-H. Liu and Y.-H. Qiu, Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes, Applied Thermal Engineering 22 (2002), 1931-1941. [12] K. Cornwell and R. B. Schuller, A study of boiling outside a tube bundle using high speed photography, Int. J. Heat Mass Transfer 25 (1982), 683-690. [13] E. Hahne, Chen Qui-Rong and R. Windisch, Pool boiling heat transfer on finned tubes - an experimental and theoretical study, Int. J. Heat Mass Transfer 34 (1991), 2071-2079. [14] G. Ribatski, J. Jabardo and E. Silva, Modeling and experimental study of nucleate boiling on a vertical array of horizontal plain tubes, Applied Thermal and Fluid Science 32 (2008), 1530-1537. [15] S. Kumar, B. Mohanty and S. C. Gupta, Boiling heat transfer from a vertical row of horizontal tubes, Int. J. Heat Mass Transfer 45 (2002), 3657-3864. [16] X. Gao, H. Yin, Y. Huang, Y. Fang and Z. Zhang, Nucleate pool-boiling enhancement outside a horizontal bank of twisted tubes with machined porous surface, Applied Thermal Engineering 29 (2009), 3212-3217. [17] A. Schaffrath, E. F. Hicken, H. Jaegers and H. M. Prasser, Operation conditions of the emergency condenser of the SWR 1000, Nuclear Engineering and Design 188 (1999), 303-318. [18] M. G. Kang, Effects of elevation angle on pool boiling heat transfer of tandem tubes, Int. J. Heat Mass Transfer 85 (2015), 918-923. [19] H. W. Coleman and W. G. Steele, Experimentation and Uncertainty Analysis for Engineers, 2nd ed., John Wiley & Sons, 1999.
|