Keywords and phrases: liquid water content, turbulence, variance, covariance, microphysical processes.
Received: April 19, 2022; Accepted: May 20, 2022; Published: May 28, 2022
How to cite this article: Bakary Coulibaly, Emile Danho and N’dri Roger Djue, Budgets of variances and covariances of liquid water content in warm and precipitating cloud layers, Advances and Applications in Fluid Mechanics 28 (2022), 11-26. http://dx.doi.org/10.17654/0973468622002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] T. J. Anurose, J. B. Duran, J. Schmidli and A. Seifert, Understanding the moisture variance in precipitating shallow cumulus convection, JGR Atmospheres 21 (2019), 1-20. [2] Bakary Coulibaly, Emile Danho and N’dri Roger Djue, Modeling and analysis of variances and covariance of liquid water content in a warm and active cloud, Advances and Applications in Fluid Mechanics 27(2) (2021), 67-90. [3] A. Cheng and Kuan-Man Xu, A PDF-based microphysics parameterization for simulation of drizzling boundary layer clouds, Journal of Atmospheric Sciences 66 (2009), 2317-2334. [4] A. Cheng and Kuan-Man Xu, Simulation of shallow cumuli and their transition to deep convective clouds by cloud-resolving models with different third-order turbulence closures, Q. J. R. Meteorol. Soc. 132 (2006), 359-382. [5] M. Ekaterina and D. Mironov, Boundary conditions for scalar (co)variances over heterogeneous surfaces, Boundary-Layer Meteorol. 169 (2018), 139-150. [6] B. M. Griffin and E. Larson, Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS), Geosci. Model Dev. 9 (2016), 4273-4295. [7] S. O. Joseph, O. D. Omololu and L. Olalekan, Analysis of vertical profiles of precipitable liquid water content in tropical climate using micro rain radar, Journal of Geoscience and Environment Protection 7 (2019), 140-155. [8] E. Kessler, On the distribution and continuity of water substance on atmospheric circulation, Meteorol. Monogr. 10(32) (1969), 1-84. [9] M. F. Khairoutdinov and D. A. Randall, Similarity of deep continental cumulus convection as revealed by a three dimensional cloud-resolving model, Journal of Atmospheric Sciences 59 (2002), 2550-2566. [10] M. F. Khairoutdinov and D. A. Randall, Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, result, uncertainties, and sensitivities, Journal of Atmospheric Sciences 60 (2003), 607-625. [11] J. L. Redelsperger and G. Sommeria, Methode de representation de la turbulence d’echelle inferieure a la maille pour un modèle tri-dimensionnel de convection nuageuse, Boundary-Layer Meteorol. 21 (1981), 509-530. [12] R. R. Rogers, A Short Course in Cloud Physics, Pergamon Press, 1976. [13] L. Rui, J. Guo, Y. Fu, Q. Min, Y. Wang, X. Gao and X. Dong, Estimating the vertical profiles of cloud water content in warm rain clouds, Journal of Geophysical Research 10 (2015), 250-266. [14] P. Sagaut, Numerical simulations of separated flows with subgrid models, Rech. Aéro. 1 (1996), 51-63. [15] V. Schemann and A. Seifert, A budget Analysis of the variances of temperature and moisture in precipitating shallow cumulus convection, Boundary-Layer Meteorol. 163 (2017), 357-373. [16] U. Wacker, Structural stability in cloud physics using parameterized microphysics, Beitr. Phys. Atmosph. 65(3) (1992), 231-249. [17] R. Wood, P. R. Feld and W. R. Cotton, Autoconversion rate bias in stratiform boundary layer cloud parameterizations, Atmospheric Research 65 (2002), 109-128.
|