Keywords and phrases: piezometric head, creeping flow, Darcy’s law, conformal mapping, Schwarz-Christoffel transformation.
Received: March 2, 2022; Accepted: April 25, 2022; Published: May 11, 2022
How to cite this article: J. Venetis, Analytic evaluation of piezometric head for a creeping flow past a fully constrained obstacle, Advances in Differential Equations and Control Processes 27 (2022), 163-179. http://dx.doi.org/10.17654/0974324322019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] V. Aravin and S. Numerov, Theory of Fluid Flow in Undeformable Porous Media, Gosstrolizdat, Moscow, 1953. [2] J. Bear, Dynamics of fluids in porous media, American Elsevier, 1972. [3] J. Bear, Dynamics of Ground Water ΜcGraw - Hill, New York, 1979. [4] M. Harr, Ground Water and Seepage, McGraw – Hill, New York, 1962. [5] K. Terzaghi and R. Peck, Soil Mechanics in Engineering Practice, John Wiley and Sons INC, New York, 1967. [6] D. Gerard-Varet, The Navier wall law at a boundary with random roughness, Comm. in Math. Phys. 286(1) (2009), 81-110. [7] R. Krishnan and P. Shukla, Creeping flow of couple stress fluid past a fluid sphere with a solid core, ZAMM Journal of Applied Mathematics and Mechanics 101(11) (2021), 1-11. [8] S. Ershkov, Non-stationary creeping flows for incompressible 3D Navier-Stokes equations, Eur. J. Mech. B/Fluids 61 (2017), 154-159. [9] J. Venetis and K. Diamantis, Alternative methods for the foundation of a building in a ground of alluvium sand, Dipl. Thesis in Faculty of Civ. Eng. NTUA 2002. (in Greek). [10] E. Zauderer, Partial Differential Equations of Applied Mathematics, John Wiley and Sons, New York, 1989. [11] M. Spiegel, Complex Analysis, Schaum’s Outline Series, 1977. [12] R. Remmert, Classical Τopics in Complex Function Theory, Springer, 1998. [13] A. Markushevich, Theory of Functions of a Complex Variable, Vol. 1, AMS Chelsea Pub., 2005. [14] A. Markushevich, Theory of Functions of a Complex Variable, Vol. 6, AMS Chelsea Pub., 2005. [15] D. Gilbarg, A generalization of the Schwarz-Christoffel transformation, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 609-612. [16] T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping, Cambridge, U.K.: Cambridge Univ. Press, 2002. [17] J. Venetis, An analytical simulation of boundary roughness for incompressible viscous flows, WSEAS Transactions on Applied and Theoretical Mechanics 16 (2021), 9-15.
|