Keywords and phrases: stochastic epidemic models, the posterior predictive distribution, model determination.
Received: March 2, 2022; Accepted: April 11, 2022; Published: April 27, 2022
How to cite this article: Muteb Alharthi, Model discrimination for epidemiological SEIR-type models with different transmission mechanisms, JP Journal of Biostatistics 20 (2022), 27-50. http://dx.doi.org/10.17654/0973514322012
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Alharthi, Bayesian model assessment for stochastic epidemic models, PhD thesis, University of Nottingham, 2016. [2] M. Alharthi, T. Kypraios and P. D. O’Neill, Bayes factors for partially observed stochastic epidemic models, Bayesian Anal. 14(3) (2019), 907-936. [3] O. N. Bjørnstad, B. F. Finkenstädt and B. T. Grenfell, Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model, Ecological Monographs 72(2) (2002), 169-184. [4] R. J. Boys and P. R. Giles, Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates, J. Math. Biol. 55(2) (2007), 223-247. [5] R. Deardon, S. P. Brooks, B. T. Grenfell, M. J. Keeling, M. J. Tildesley, N. J. Savill, D . J. Shaw and M. E. J. Woolhouse, Inference for individual-level models of infectious diseases in large populations, Statist. Sinica 20(1) (2010), 239-261. [6] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), 1-38. [7] A. Gardner, R. Deardon and G. Darlington, Goodness-of-fit measures for individual-level models of infectious disease in a Bayesian framework, Spatial and Spatio-Temporal Epidemiology 2(4) (2011), 273-281. [8] A. E. Gelfand and A. F. Smith, Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc. 85(410) (1990), 398-409. [9] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis, CRC Press, 2013. [10] A. Gelman, X.-L. Meng and H. Stern, Posterior predictive assessment of model fitness via realized discrepancies, Statist. Sinica 6(4) (1996), 733-760. [11] G. J. Gibson, G. Streftaris and D. Thong, Comparison and assessment of epidemic models, Statist. Sci. 33(1) (2018), 19-33. [12] I. Guttman, The use of the concept of a future observation in goodness-of-fit problems, J. Roy. Statist. Soc. Ser. B 29 (1967), 83-100. [13] E. S. Knock and P. D. O’Neill, Bayesian model choice for epidemic models with two levels of mixing, Biostatistics 15(1) (2014), 46-59. [14] T. Kypraios, Efficient Bayesian inference for partially observed stochastic epidemics and a new class of semi-parametric time series models, PhD thesis, Lancaster University, 2007. [15] P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62(4) (2006), 1170-1177. [16] P. Neal and G. O. Roberts, A case study in non-centering for data augmentation: stochastic epidemics, Stat. Comput. 15(4) (2005), 315-327. [17] P. J. Neal and G. O. Roberts, Statistical inference and model selection for the 1861 Hagelloch measles epidemic, Biostatistics 5(2) (2004), 249-261. [18] P. D. O’Neill, Introduction and snapshot review: relating infectious disease transmission models to data, Stat. Med. 29(20) (2010), 2069-2077. [19] P. D. O’Neill and N. G. Becker, Inference for an epidemic when susceptibility varies, Biostatistics 2(1) (2001), 99-108. [20] P. D. O’Neill and P. J. Marks, Bayesian model choice and infection route modeling in an outbreak of norovirus, Stat. Med. 24(13) (2005), 2011-2024. [21] P. D. O’Neill and G. O. Roberts, Bayesian inference for partially observed stochastic epidemics, J. Roy. Statist. Soc. Ser. A 162(1) (1999), 121-129. [22] P. D. O’Neill and C. Wen, Modelling and inference for epidemic models featuring non-linear infection pressure, Math. Biosci. 238(1) (2012), 38-48. [23] D. B. Rubin, Estimation in parallel randomized experiments, Journal of Educational and Behavioral Statistics 6(4) (1981), 377-401. [24] N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci. 4(3) (1969), 395-402. [25] G. Streftaris and G. J. Gibson, Bayesian analysis of experimental epidemics of foot-and-mouth disease, Proceedings of the Royal Society of London B 271(1544) (2004), 1111-1118. [26] G. Streftaris and G. J. Gibson, Non-exponential tolerance to infection in epidemic systems-modeling, inference and assessment, Biostatistics 13(4) (2012), 580-593. [27] S. Watanabe, Mathematical Theory of Bayesian Statistics, CRC Press, 2018.
|