Keywords and phrases: type I half logistic family, power Ailamujia model, simulation, application.
Received: February 3, 2022; Accepted: April 6, 2022; Published: April 18, 2022
How to cite this article: A. S. Al-Moisheer and Naif Alotaibi, A new extension of inverse power Ailamujia distribution with application, Advances and Applications in Statistics 76 (2022), 1-22. http://dx.doi.org/10.17654/0972361722033
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), 641-652. [2] G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), 883-893. [3] G. M. Cordeiro, A. Z. Afify, E. M. M. Ortega, A. K. Suzuki and M. E. Mead, The odd Lomax generator of distributions: properties, estimation and applications, J. Comput. Appl. Math. 347 (2019), 222-237. [4] D. Kumar, U. Singh and S. K. Singh, A new distribution using sine function - its application to bladder cancer patients data, Journal of Statistics Applications and Probability 4(3) (2015), 417-427. [5] A. Z. Afify and M. Alizadeh, The odd Dagum family of distributions: properties and applications, J. Appl. Probab. 15 (2020), 45-72. [6] A. S. Hassan, M. Elgarhy and M. Shakil, Type II half logistic family of distributions with applications, Pakistan Journal of Statistics and Operation Research 13(2) (2017), 245-264. [7] A. Z. Afify, M. Alizadeh, H. M. Yousof, G. Aryal and M. Ahmad, The transmuted geometric-G family of distributions: theory and applications, Pakistan J. Statist. 32 (2016), 139-160. [8] F. S. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos, R. Venâncio and G. M. Cordeiro, The odd Lindley-G family of distributions, Austrian Journal of Statistics 46(1) (2017), 65-87. [9] Z. M. Nofal, A. Z. Afify, H. M. Yousof and G. M. Cordeiro, The generalized transmuted-G family of distributions, Comm. Statist. Theory Methods 46 (2017), 4119-4136. [10] M. A. Aldahlan, F. Jamal, Ch. Chesneau, M. Elgarhy and I. Elbatal, The truncated Cauchy power family of distributions with inference and applications, Entropy 22 (2020), 1-25. [11] H. M. Yousof, A. Z. Afify, G. G. Hamedani and G. Aryal, The Burr X generator of distributions for lifetime data, J. Stat. Theory Appl. 16 (2017), 288-305. [12] M. M. Badr, I. Elbatal, F. Jamal, Ch. Chesneau and M. Elgarhy, The transmuted odd Fréchet-G family of distributions: theory and applications, Mathematics 8 (2020), 1-20. [13] H. Al-Mofleh, M. Elgarhy, A. Z. Afify and M. S. Zannon, Type II exponentiated half logistic generated family of distributions with applications, Electronic Journal of Applied Statistical Analysis 13(2) (2020), 536-561. [14] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif and M. Q. Shahbaz, Topp-Leone family of distributions: some properties and application, Pakistan Journal of Statistics and Operation Research 12(3) (2016), 443-451. [15] R. A. Bantan, Ch. Chesneau, F. Jamal and M. Elgarhy, On the analysis of new COVID-19 cases in Pakistan using an exponentiated version of the M family of distributions, Mathematics 8 (2020), 1-20. [16] A. D. C. Nascimento, K. F. Silva, G. M. Cordeiro, M. Alizadeh, H. M. Yousof and G. G. Hamedani, The odd Nadarajah-Haghighi family of distributions: properties and applications, Studia Sci. Math. Hungar. 56 (2019), 185-210. [17] A. M. Almarashi, M. Elgarhy, F. Jamal and Ch. Chesneau, The exponentiated truncated inverse Weibull-generated family of distributions with applications, Symmetry 12 (2020), 650. https://doi.org/10.3390/sym12040650. [18] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71 (2013), 63-79. [19] G. M. Cordeiro, M. Alizadeh, M. Diniz and R. Pedro, The type I half-logistic family of distributions, J. Stat. Comput. Simul. 86(4) (2016), 707-728. [20] H. Q. Lv, L. H. Gao and C. L. Chen, Ailamujia distribution and its application in support ability data analysis, J. Acad. Armor. Force Eng. 16 (2002), 48-52. [21] G. T. Pan, B. H. Wang, C. L. Chen, Y. B. Huang and M. T. Dang, The research of interval estimation and hypothetical test of small sample of 3 Ailamujia distribution, Appl. Statist. Manag. 28 (2009), 468-472. [22] C. M. Yu, Y. H. Chi, Z. W. Zhao and J. F. Song, Maintenance-decision-oriented modeling and simulating of battlefield injury in campaign macrocosm, J. Syst. Sim. 20 (2008), 5669-5671. [23] U. Jan, K. Fatima and S. P. Ahmad, On weighted Ailamujia distribution and its applications to life time data, Journal of Statistics Applications and Probability: An International Journal 6(3) (2017), 619-633. [24] B. Jayakumar and R. Elangovan, A new generalization of Ailamujia distribution with applications in bladder cancer data, Int. J. Sci. Res. Math. Stat. Sci. 6 (2019), 61-68. [25] A. Aijaz, A. Ahmad and R. Tripathi, Inverse analogue of Ailamujia distribution with statistical properties and applications, Asian Research Journal of Mathematics 16(9) (2020), 36-46. [26] A. A. Rather, C. Subramanian, S. Shafi, K. A. Malik, P. J. Ahmad, B. A. Para and T. R. Jan, A new size biased distribution with applications in engineering and medical science, International Journal of Scientific Research in Mathematical and Statistical Sciences 5 (2018), 66-76. [27] A. Ahmad, S. Q. Ul Ain, A. Ahmad and R. Tripathi, Bayesian estimation of inverse Ailamujia distribution using different loss functions, Journal of Xi’an University of Architecture and Technology 12(11) (2020), 226-238. [28] S. Q. Ul Ain, A. Aijaz and R. Tripathi, A new two parameter Ailamujia distribution with applications in bio-medical, Journal of Xi’an University of Architecture and Technology 12(11) (2020), 592-604. [29] F. Jamal, C. Chesneau, K. Aidi and A. Ali, Theory and application of the power Ailamujia distribution, Journal of Mathematical Modeling 9(3) (2021), 391-413. [30] M. K. A. Refaie, Burr X exponentiated exponential distribution, Journal of Statistics and Applications 1(2) (2018), 71-88. [31] M. H. Tahir, M. Mansoor, M. Zubair and G. Hamedani, McDonald log logistic distribution with an application to breast cancer data, J. Stat. Theory Appl. 13 (2014), 65-82. [32] G. M. Cordeiro, E. M. Hashimoto and E. M. M. Ortega, The McDonald Weibull model, Statistics 48 (2014), 256-278. [33] I. Elbatal, Y. M. El Gebaly and E. A. Amin, The beta generalized inverse Weibull geometric distribution and its applications, Pakistan Journal of Statistics and Operation Research 13(1) (2017), 75-90. [34] A. Z. Afify, H. M. Yousof and S. Nadarajah, The beta transmuted-H family for lifetime data, Statistics and its Interface 10 (2017), 505-520. [35] S. J. Almalki and J. Yuan, A new modified Weibull distribution, Reliability Engineering and System Safety 111 (2013), 164-170. [36] A. Z. Afify, Z. M. Nofal and N. S. Butt, Transmuted complementary Weibull geometric distribution, Pakistan Journal of Statistics and Operations Research 10 (2014), 435-454. [37] C. Lee, F. Famoye and O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, Journal of Modern Applied Statistical Methods 6 (2007), 173-186. [38] A. Z. Afify, Z. M. Nofal and A. N. Ebraheim, Exponentiated transmuted generalized Rayleigh distribution: a new four parameter Rayleigh distribution, Pakistan Journal of Statistics and Operations Research 11 (2015), 115-134. [39] A. J. Lemonte, W. Barreto-Souza and G. M. Cordeiro, The exponentiated Kumaraswamy distribution and its log-transform, Braz. J. Probab. Stat. 27 (2013), 31-53. [40] G. M. Cordeiro, E. M. M. Ortega and B. V. Popovic, The gamma-Lomax distribution, J. Stat. Comput. Simul. 85 (2015), 305-319. [41] M. H. Tahir, G. M. Cordeiro, M. Mansoor and M. Zubair, The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat. 44 (2015), 455-474. [42] A. Z. Afify, Z. M. Nofal, H. M. Yousof, Y. M. El Gebaly and N. S. Butt, Transmuted Weibull Lomax distribution, Pakistan Journal of Statistics and Operations Research 11 (2015), 135-152. [43] I. W. Burr, Cumulative frequency functions, Annals of Mathematical Statistics 13 (1942), 215-232. [44] N. I. Rashwan, A note on Kumaraswamy exponentiated Rayleigh distribution, J. Stat. Theory Appl. 5 (2016), 286-295. [45] P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro and R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal. 55 (2011), 1118-1136. [46] J. N. da Cruz, E. M. M. Ortega and G. M. Cordeiro, The log-odd log-logistic Weibull regression model: modelling, estimation, influence diagnostics and residual analysis, J. Stat. Comput. Simul. 86 (2016), 1516-1538. [47] A. S. Hassan and M. Elgarhy, A new family of exponentiated Weibull-generated distributions, International Journal of Mathematics and its Applications 4 (2016b), 135-148. [48] R. A. ZeinEldin and M. A. Elgarhy, A new generalization of Weibull-exponential distribution with application, J. Nonlinear Sci. Appl. 11 (2018), 1099-1112. [49] A. Alzaatreh, F. Famoye and C. Lee, The gamma-normal distribution: properties and applications, Comput. Statist. Data Anal. 69 (2014), 67-80. [50] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods 31 (2002), 497-512. [51] K. K. Jose, Marshall-Olkin family of distributions and their applications in reliability theory, time series modeling and stress-strength analysis, Proc. ISI 58th World Statist. Congr. Int. Stat. Inst., 21st-26th August 2011, pp. 3918-3923. [52] M. S. Khan, R. King and I. L. Hudson, A new three parameter transmuted Chen lifetime distribution with application, J. Appl. Statist. Sci. 21 (2013), 239-259. [53] M. S. Khan, R. King and I. L. Hudson, Transmuted exponentiated Chen distribution with application to survival data, ANZIAM J. 57 (2016), 268-290. [54] A. J. Gross and V. A. Clark, Survival Distributions: Reliability Applications in the Biomedical Sciences, John Wiley and Sons, New York, 1975.
|