Keywords and phrases: fuzzy stochastic process, fuzzy Brownian motion, fuzzy Ornstein-Uhlenbeck process, fuzzy geometric Brownian motion, fuzzy differential stochastic equation.
Received: February 2, 2022; Accepted: March 6, 2022; Published: April 7, 2022
How to cite this article: Kumwimba Seya Didier, Walo Omana Rebecca, Mabela Matendo Rostin, Badibi Omak Christopher, Kankolongo Kadilu Patient and Marcel Remon, Fuzzy Ornstein-Uhlenbeck and Brownian geometric motion processes driven by a fuzzy Brownian motion, Advances in Fuzzy Sets and Systems 27(1) (2022), 95-110.
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] O. A. AbuAarqob, N. T. Shawagfeh and O. A. AbuGhneim, Functions Defined on Fuzzy Real Numbers According to Zadeh’s Extension, Int. Math. Forum 3 (2008), 763-776. [2] L. Aggoun and R. Elliott, Measure Theory and Filtering Introduction and Application, Cambridge University Press, 2004. www.cambrige.org/9780521838030 [3] T. Allahviranloo, Z. Gouyandeh, A. Armand and A. Hasanoglu, On fuzzy solution for heat equation based on generalized Hukuhara differentiability, Fuzzy Sets and Systems 265 (2015), 1-23. [4] G. A. Anastassiou, Fuzzy Mathematics: Approximation Theory, Berlin Heidelberg, Springer-Verlag, 2010. [5] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems 230 (2013), 119-141. [6] N. Bouleau, Processus Stochastiques et Applications, Hermann, 1988. [7] J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems 110 (2000), 43-54. [8] H. Duminil-Copin, Mouvement Brownien et introduction au calcul stochastique, University of Geneva, 2013. [9] D. Kumwimba, R. Mabela, M. Rémon and R. Walo, Fuzzy Itô integral driven by a fuzzy Brownian motion, Journal of Fuzzy Set Valued Analysis (2015), 232-244. [10] D. Kumwimba, R. Walo, R. Mabela, C. Badibi and P. Kankolongo, Fuzzy differential equations driven by a fuzzy Brownian motion, Journal of Applied Mathematics and Physics 10 (2022), 641-655. [11] D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliqué à la finance, Ellipse, 2012. [12] M. T. Malinowski, Strong solutions to stochastic fuzzy differential equations of Itô type, Mathematical and Computer Modelling 55 (2012), 918-928. [13] M. T. Malinowski, Itô type stochastic fuzzy differential equations with delay, Systems and Control Letters 61 (2012), 692-701. [14] M. T. Malinowski, Some properties of strong solutions to stochastic fuzzy differential equations, Information Sciences 252 (2013), 62-80. [15] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications 91 (1983), 552-558. [16] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409-422. [17] D. Ralescu, Fuzzy random variables revisited, Mathematics of Fuzzy Sets, Handbook Fuzzy Sets Series, Kluwer, Boston, 3 (1999), 701-710. [18] M. Shahjadal, A. Sultana, M. Rao Valluri and N. Kanty Mirtra, Black-Scholes PDE and Ornstein-Uhlenbeck SDE Process to analyse stock option: A study in fuzzy context, IJMC 1(1) (2015), 1-10. [19] L. Stefanini, L. Sorini and M. L. Guerra, Fuzzy Numbers Fuzzy Arithmetic, Chapter 12, W. Pedrycz, A. Skowron and V. Kreinovich, eds., Handbook of Granular Computing, John Wiley and Sons, Ltd, 2008.
|