Keywords and phrases: modified Weibull distribution, sine generated class, incomplete moments, COVID-19, maximum likelihood.
Received: February 9, 2022; Revised: March 26, 2022; Accepted: March 30, 2022
How to cite this article: I. Elbatal, Naif Alotaibi, Ibrahim Al-Dayel, A. W. Shawki and M. Elgarhy, Statistical analysis of COVID-19 data in Kingdom of Saudi Arabia using: sine modified Weibull model, JP Journal of Biostatistics 20 (2022), 11-26.
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), 883-893. [2] K. Zografos and N. Balakrishnan, On families of beta- and generalized gamma-generated distributions and associated inference, Stat. Methodol. 6(4) (2009), 344-362. [3] A. Alzaghal, F. Felix Famoye and C. Lee, Exponentiated T-X family of distributions with some applications, International Journal of Statistics and Probability 2(3) (2013), 31-49. [4] D. Kumar, U. Singh and S. K. Singh, A new distribution using sine function - its application to bladder cancer patients data, Journal of Statistics Applications and Probability 4(3) (2015), 417-427. [5] F. S. Gomes-Silva, A. Percontini, E. de Brito, M. W. Ramos, R. Venâncio and G. M. Cordeiro, The odd Lindley-G family of distributions, Austrian Journal of Statistics 46(1) (2017), 65-87. [6] A. S. Hassan, M. Elgarhy and M. Shakil, Type II half logistic family of distributions with applications, Pakistan Journal of Statistics and Operation Research 13(2) (2017), 245-264. [7] M. Nassar, D. Kumar, S. Dey, G. M. Cordeiro and A. Z. Afify, The Marshall-Olkin alpha power family of distributions with applications, J. Comput. Appl. Math. 351 (2019), 41-53. [8] M. Bourguignon, R. B. Silva and G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science 12 (2014), 53-68. [9] A. Z. Afify, G. M. Cordeiro, H. M. Yousof, Z. M. Nofal and A. Alzaatreh, The Kumaraswamy transmuted-G family of distributions: properties and applications, Journal of Data Science 14(2) (2016), 245-270. [10] A. S. Hassan and S. E. Hemeda, The additive Weibull-G family of probability distributions, International Journal of Mathematics and its Applications 4 (2016), 151-164. [11] R. A. Bantan, F. Jamal, Ch. Chesneau and M. Elgarhy, A new power Topp-Leone generated family of distributions with applications, Entropy 21(12) (2019), 1-24. [12] M. A. Aldahlan, F. Jamal, Ch. Chesneau, M. Elgarhy and I. Elbatal, The truncated Cauchy power family of distributions with inference and applications, Entropy 22 (2020), 1-25. [13] G. M. Cordeiro, A. Z. Afify, E. M. Ortega, A. K. Suzuki and M. E. Mead, The odd Lomax generator of distributions: properties, estimation and applications, J. Comput. Appl. Math. 347 (2019), 222-237. [14] M. M. Badr, I. Elbatal, F. Jamal, Ch. Chesneau and M. Elgarhy, The transmuted odd Fréchet-G family of distributions: theory and applications, Mathematics 8 (2020), 1-20. [15] A. A. Al-Babtain, I. Elbatal, Ch. Chesneau and M. Elgarhy, Sine Topp-Leone-G family of distributions: theory and applications, Open Physics 18 (2020), 574-593. [16] A. M. Sarhan and M. Zaindin, Modified Weibull distribution, Appl. Sci. 11 (2009), 123-136. [17] G. O. Silva, E. M. M. Ortega and G. M. Cordeiro, Beta modified Weibull distribution, Lifetime Data Analysis 16(3) (2010), 409-430. [18] S. J. Almalki and J. Yuan, A new modified Weibull distribution, Reliability Engineering and System Safety 111 (2013), 164-170. [19] G. M. Cordeiro, A. Saboor, M. N. Khan, S. B. Provost and E. M. M. Ortega, The transmuted generalized modified Weibull distribution, Filomat 31(5) (2017), 1395-1412. [20] M. S. Khan and R. King, Transmuted modified Weibull distribution: a generalization of the modified Weibull probability distribution, European Journal of Pure and Applied Mathematics 6 (2013), 66-88. [21] I. Elbatal, Exponentiated modified Weibull distribution, Econ. Qual. Control 26 (2011), 189-200. [22] A. Saboor, H. S. Bakouch and M. N. Khan, Beta Sarhan-Zaindin modified Weibull distribution, Appl. Math. Model. 40 (2016), 6604-6621. [23] B. He and W. Cui, An additive modified Weibull distribution, Reliability Engineering and System Safety 145 (2016), 28-37. [24] D. Al-Sulami, Exponentiated exponential Weibull distribution: mathematical properties and application, American Journal of Applied Sciences 17(1) (2020), 188-195. [25] F. H. Eissa, The exponentiated Kumaraswamy-Weibull distribution with application to real data, International Journal of Statistics and Probability 6(6) (2017), 167-182. [26] A. M. Almarashi, M. Elgarhy, F. Jamal and C. Chesneau, The exponentiated truncated inverse Weibull-generated family of distributions with applications, Symmetry 12(4) (2020), 650. https://doi.org/10.3390/sym12040650. [27] A. Saghira, S. Tazeema and I. Ahmad, The weighted exponentiated inverted Weibull distribution: properties and application, Journal of Informatics and Mathematical Sciences 9(1) (2017), 137-151.
|