Keywords and phrases: hybrid desalination, microbial desalination cell (MDC), reverse osmosis (RO), energy.
Received: January 15, 2022; Revised: February 21, 2022; Accepted: March 7, 2022; Published: March 15, 2022
How to cite this article: Hedia Khaled, Khaoula Hidouri and Béchir Chaouachi, Hybrid desalination combining microbial cells and reverse osmosis, JP Journal of Heat and Mass Transfer 26 (2022), 179-196. http://dx.doi.org/10.17654/0973576322019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] USBOR, SNL, Desalination and Water Purification Technology Roadmap, Desalination and Water Purification Research and Development Program Report 95, 2003. [2] M. Elimelech and W. A. Phillip, The future of seawater desalination, Energy, Technology and the Environment Science 333(2011) (2011), 712-717. [3] NRC, Desalination: A National Perspective, National Research Council, 2008. [4] A. Carmalin Sophia, V. M. Bhalambaal, Eder C. Lima and M. Thirunavoukkarasu, Microbial desalination cell technology: contribution to sustainable wastewater treatment process, current status and future applications, Journal of Environmental Chemical Engineering 4 (2016), 3468-3478. [5] M. S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, A framework for better membrane separation, J. Sci. 285 (2006), 4-29. [6] W. Li, H. Yu and Z. He, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ. Sci. 7 (2013), 911-924. [7] D. Pant, A. Singh, G. Van Bogaert, S. I. Olsen, P. S. Nigam, L. Diels and K. Vanbroekhoven, Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters, RSC Adv. 2 (2012), 1248-1263. [8] H. Wang, H. Luo, P. H. Fallgren, S. Jin and Z. J. Ren, Bioelectrochemical system platform for sustainable environmental remediation and energy generation, Biotechnol. Adv. 33 (2015), 317-334. [9] G. Mohanakrishna, S. Srikanth and D. Pant, Bioelectrochemical systems (BES) for microbial electroremediation: an advanced wastewater treatment technology, Applied Environmental Biotechnology: Present Scenario and Future Trends, Springer, New Delhi, India, 2015, pp. 145-167. [10] H. Wang, J. D. Park and Z. J. Ren, Practical energy harvesting for microbial fuel cells: A review, Environ. Sci. Technol. 49 (2015), 3267-3277. [11] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, Microbial fuel cells: methodology and technology, Environ. Sci. Technol. 40 (2006), 5181-5192. [12] P. T. Kelly and Z. He, Nutrients removal and recovery in bioelectrochemical systems: a review, Bioresour. Technol. 153 (2014), 351-360. [13] Y. L. Oon, S. A. Ong, L. N. Ho, Y. S. Wong, F. A. Dahalan, Y. S. Oon, H. K. Lehl and W. E. Thung, Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery, Bioresour. Technol. 203 (2016), 190-197. [14] Q. Ping, Zhen He, Chair, Marc A. Edwards, Luke E. Achenie and Olya S. Keen, Advancing Microbial Desalination Cell towards Practical Applications, 2016. [15] H. M. Saeed, G. A. Husseini, Sh. Youssef, J. Saif, S. Al-Asheh, A. Abu. Fara, S. Azzam, R. Khawaga and A. Aidan, Microbial desalination cell technology: a review and a case study, Desalination 359 (2015), 1-13. [16] Y. Kim and B. E. Logan, Microbial desalination cells for energy production and desalination, Desalination 308 (2013), 122-130. [17] K. Zuo, J. Chang, F. Liu, X. Zhang, P. Liang and X. Huang, Enhanced organics removal and partial desalination of high strength industrial wastewater with a multistage microbial desalination cell, Desalination 423 (2017), 104-110. [18] Surajbhan Sevda, Heyang Yuan, Zhen He and Ibrahim M. Abu-Reesh, Microbial desalination cells as a versatile technology: functions, optimization and prospective, Desalination 371 (2015), 9-17. [19] X. Cao, X. Huang, P. Liang, K. Xiao, Y. J. Zhou, X. Y. Zhang and B. E. Logan, A new method of water desalination using microbial desalination cells, Environ. Sci. Technol. 43 (2009), 7148-7152. [20] Q. Ping, B. Cohen, C. Dosoretz and Z. He, Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells, Desalination 325 (2013), 48-55. [21] V. M. Ortiz-Martínez, M. J. Salar-García, A. P. De Los Ríos, F. J. Hernández- Fernández, J. A. Egea and L. J. Lozano, Developments in microbial fuel cell modeling, Chemical Engineering Journal 271 (2015), 50-60. https://doi.org/10.1016/j.cej.2015.02.076. [22] S. Luo, H. Sun, Q. Ping, R. Jin and Z. A. He, Review of modeling bioelectrochemical systems: engineering and statistical aspects, Energies 9 (2016), 111. https://doi.org/10.3390/en902011. [23] Q. Ping, C. Y. Zhang, X. E. Chen, B. Zhang, Z. Y. Huang and Z. He, Mathematical model of dynamic behavior of microbial desalination cells for simultaneous waste water treatment and water desalination, Environ. Sci. Technol. 48 (2014), 13010-13019. https://doi.org/10.1021/es504089x. [24] R. P. Pinto, B. Srinivasan, M. F. Manuel and B. Tartakovsky, A two-population bioelectrochemical model of a microbial fuel cell, Bioresour. Technol. 101 (2010), 5256-5265.
|