Keywords and phrases: thermal modeling, hot-spot temperature, differential equation, ambient temperature, real time monitoring.
Received: January 4, 2022; Accepted: February 23, 2022; Published: March 15, 2022
How to cite this article: Vinit Mehta and Jayashri Vajpai, Time-varying ambient temperature and variable electrical load based thermal modeling of power transformer using differential equation approach, JP Journal of Heat and Mass Transfer 26 (2022), 91-109. http://dx.doi.org/10.17654/0973576322015
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] IEC, International Electrotechnical Commission - 60076-2 International Standard, Power Transformers: Temperature Rise, 2nd ed., 2004. [2] IEC, International Electrotechnical Commission - 60076-3 International Standard, Insulation Levels, Dielectric Tests and External Clearances in Air, 3rd ed., 2013. [3] IEC, International Electrotechnical Commission - 60076-5 International Standard, Ability to Withstand Short Circuit, 2nd ed., 2004. [4] IEC, International Electrotechnical Commission - 60076-7 International Standard, Loading Guide for Oil-immersed Power Transformers, 2009. [5] IEC, International Electrotechnical Commission - 60354 International Standard - Loading Guide for Oil-immersed Power Transformers, 2nd ed., 1992. [6] Transformers Committee of the IEEE Power Engineering Society, IEEE Guide for Loading Mineral-oil-immersed Transformers, IEEE Std. C57.91-1995 (R2002), IEEE Std. C, 1995. [7] G. Swift, T. S. Molinski and W. Lehn, A fundamental approach to transformer thermal modeling - Part I: Theory and equivalent circuit, IEEE Trans. Power Deliv. 16(2) (2001), 171-175. doi:10.1109/61.915478. [8] G. Swift, T. S. Molinski, R. Bray and R. Menzies, A fundamental approach to transformer thermal modeling - Part II: Field verification, IEEE Trans. Power Deliv. 16(2) (2001), 176-180. doi:10.1109/61.915479. [9] M. K. Pradhan and T. S. Ramu, Estimation of the hottest spot temperature (HST) in power transformers considering thermal inhomogeneity of the windings, IEEE Trans. Power Deliv. 19(4) (2004), 1704-1712. doi:10.1109/TPWRD.2004.835291. [10] D. Susa, M. Lehtonen and H. Nordman, Dynamic thermal modelling of power transformers, IEEE Trans. Power Deliv. 20(1) (2005), 197-204. doi:10.1109/pes.2004.1373100. [11] O. A. Amoda, D. J. Tylavsky, G. A. McCulla and W. A. Knuth, A new model for predicting hottest-spot temperature in transformers, 40th North Am. Power Symp., 2008, pp. 1-8. doi:10.1109/NAPS.2008.5307407. [12] V. V. S. S. Haritha, T. R. Rao, A. Jain and M. Ramamoorty, Thermal modeling of electrical transformer, International Conference on Power Systems, 2010, pp. 597-602. doi:10.1109/icpws.2009.5442724. [13] N. Lelekakis, J. Wijaya, D. Martin, T. Saha, D. Susa and C. Krause, Aging rate of grade 3 presspaper insulation used in power transformers, IEEE Trans. Dielectr. Electr. Insul. 21(5) (2014), 1-9. doi:10.1109/TDEI.2014.004266. [14] N. A. Muhamad, H. Kamarden and N. A. Othman, Heat distribution pattern of oil-filled transformer at different hottest spot temperature locations, IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 2015, pp. 979-982. [15] R. Godina, E. M. G. Rodrigues, J. C. O. Matias and J. P. S. Catalao, Effect of loads and other key factors on oil-transformer ageing: sustainability benefits and challenges, Energies 8(10) (2015), 12147-12186. doi:10.3390/en81012147. [16] Z. Radakovic, M. Jevtic and B. Das, Dynamic thermal model of kiosk oil immersed transformers based on the thermal buoyancy driven air flow, Int. J. Electr. Power Energy Syst. 92 (2017), 14-24. doi:10.1016/j.ijepes.2017.04.003. [17] M. H. Roslan, N. Azis, M. Zainal, J. Jasni, Z. Ibrahim and A. Ahmad, A simplified top-oil temperature model for transformers based on the pathway of energy transfer concept and the thermal-electrical analogy, Energies 10(11) (2017), 1-15. doi:10.3390/en10111843. [18] A. Gamil, A. Al-Abadi, F. Schatzl and E. Schlucker, Theoretical and empirical- based thermal modelling of power transformers, IEEE International Conference on High Voltage Engineering and Application (ICHVE), 2018, pp. 1-4. doi:10.1109/ICHVE.2018.8642180. [19] H. Wang, M. Xue, T. Wang, Y. Hou, J. Chen and J. Sun, Research on overload capability of oil-immersed distribution transformer based on hot spot temperature model, 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-5. doi:10.1109/ICEMS.2019.8922443. [20] A. Santisteban, A. Piquero, F. Ortiz, F. Delgado and A. Ortiz, Thermal modelling of a power transformer disc type winding immersed in mineral and ester-based oils using network models and CFD, IEEE Access 7 (2020), 174651-174661. doi:10.1109/ACCESS.2019.2957171. [21] B. Jia, P. Zhang and Z. Li, Aging life assessment of oil-paper insulation of traction transformer under shock load, Asia Energy and Electrical Engineering Symposium Aging, 2020, pp. 1045-1050. doi:10.1109/AEEES48850.2020.9121516. [22] L. Wang, X. Zhang, R. Villarroel, Q. Liu, Z. Wang and L. Zhou, Top-oil temperature modelling by calibrating oil time constant for an oil natural air natural distribution transformer, IET Gener. Transm. Distrib. 14(20) (2020), 4452-4458. doi:10.1049/iet-gtd.2020.0155. [23] C. Oria et al., Experimental and numerical analysis of cellulosic insulation failures of continuously transposed conductors under short circuits and thermal ageing in power transformers, IEEE Trans. Dielectr. Electr. Insul. 27(1) (2020), 325-333. doi:10.1109/TDEI.2019.008342. [24] PV Education, https://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation.
|