Keywords and phrases: polygon space, interior angle, standard sphere, diffeomorphism.
Received: January 14, 2022; Accepted: February 24, 2022; Published: March 1, 2022
How to cite this article: Yasuhiko Kamiyama, The differential structure on the configuration space of a mathematical model for cycloalkenes, JP Journal of Geometry and Topology 27 (2022), 11-31. http://dx.doi.org/10.17654/0972415X22002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois Lecture Notes in Math., Vol. 53, Springer-Verlag, 1968. [2] G. Crippen, Exploring the conformation space of cycloalkanes by linearized embedding, J. Comput. Chem. 13 (1992), 351-361. [3] M. Farber, Invitation to topological robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2008. [4] S. Goto, Y. Hemmi, K. Komatsu and J. Yagi, The closed chains with spherical configuration spaces, Hiroshima Math. J. 42 (2012), 253-266. [5] S. Goto and K. Komatsu, The configuration space of a model for ringed hydrocarbon molecules, Hiroshima Math. J. 42 (2012), 115-126. [6] S. Goto, K. Komatsu and J. Yagi, A remark on the configuration space of a model for ringed hydrocarbon molecules, Kochi J. Math. 7 (2012), 89-96. [7] S. Goto, K. Komatsu and J. Yagi, The configuration space of almost regular polygons, Hiroshima Math. J. 50 (2020), 185-197. [8] J.-C. Hausmann and A. Knutson, The cohomology ring of polygon spaces, Ann. Inst. Fourier (Grenoble) 48 (1998), 281-321. [9] H. Kamiya, Weighted trace functions as examples of Morse functions, J. Fac. Sci. Shinshu Univ. 6 (1971), 85-96. [10] Y. Kamiyama, A filtration of the configuration space of spatial polygons, Advances and Applications in Discrete Mathematics 22(1) (2019), 67-74. [11] Y. Kamiyama, The topology of the configuration space of a mathematical model for cycloalkenes, Advanced Topics of Topology, IntechOpen, London, 2022. [12] M. Kapovich and J. Millson, The symplectic geometry of polygons in the Euclidean space, J. Differential Geom. 44 (1996), 479-513. [13] J. Milnor, Morse theory, Annals of Mathematics Studies, Vol. 51, Princeton University Press, Princeton, 1963. [14] J. Milnor, Differential topology, Lectures on Modern Mathematics, Vol. II, Wiley, New York, 1964, pp. 165-183. [15] J. O’Hara, The configuration space of equilateral and equiangular hexagons, Osaka J. Math. 50 (2013), 477-489. [16] R. Rosen, A weak form of the star conjecture for manifolds, Notices Amer. Math. Soc. 7 (1960), 380. Abstract#570-28. [17] O. Saeki, Cobordism groups of special generic functions and groups of homotopy spheres, Japan. J. Math. (N.S.) 28 (2002), 287-297.
|