Keywords and phrases: compartmental models, coronavirus, Hawkes models, model evaluation, point process models, self-exciting point process models.
Received: February 23, 2021; Accepted: April 1, 2021; Published: February 18, 2022
How to cite this article: Conor Kresin, Frederic Paik Schoenberg and George Mohler, Comparison of the Hawkes and SEIR models for the spread of COVID-19, Advances and Applications in Statistics 74 (2022), 83-106. DOI: 10.17654/0972361722019
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] E. Dong, H. Du and L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, The Lancet Infectious Diseases 20(5) (2020), 533-534. [2] D. Baud, X. Qi, K. Nielsen-Saines, D. Musso, L. Pomar and G. Favre, Real estimates of mortality following COVID-19 infection, The Lancet Infectious Diseases 2020. [3] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L. Okell, S. Van Elsland, H. Thompson, R. Verity, E. Volz, H. Wang, Y. Wang, P. Walker, C. Walters, P. Winskill, C. Whittaker, C. Donnelly, S. Riley and A. Ghani, Report 9: impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, 2020. [4] M. Day, COVID-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village, British Medical Journal 368 (2020), m1165. [5] A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short and D. Sledge, The challenges of modeling and forecasting the spread of COVID-19, Proceedings of the National Academy of Sciences 117(29) (2020), 16732-16738. [6] M.-A. Rizoiu, S. Mishra, Q. Kong, M. Carman and L. Xie, SIR-Hawkes: linking epidemic models and Hawkes processes to model diffusions in finite populations, Proceedings of the 2018 World Wide Web Conference, 2018, pp. 419-428. [7] N. P. Jewell, J. A. Lewnard and B. L. Jewell, Predictive mathematical models of the COVID-19 pandemic: underlying principles and value of projections, The Journal of the American Medical Association 323(19) (2020), 1893-1894. [8] W.-H. Chiang, X. Liu and G. Mohler, Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates, medRxiv, 2020. [9] D. Bertsimas, MIT COVID analytics, May 2020. covidanalytics.io [Online; accessed 24-May-2020]. [10] Institute for Health Metrics and Evolution (IHME), IMHE COVID-19 Predictions, May 2020. covid19.healthdata.org [Online; accessed 24-May-2020]. [11] Y. Gu, COVID-19 projections using machine learning, May 2020. covid19-projections.com [Online; accessed 24-May-2020]. [12] L. A. N. Laboratory, COVID-19 confirmed and forecasted case data, May 2020. covid-19.bsvgateway.org [Online; accessed 24-May-2020]. [13] P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62(4) (2006), 1170-1177. [14] C. Dye and N. Gay, Modeling the SARS epidemic, Science 300(5627) (2003), 1884-1885. [15] A. S. Yang, Modeling the Transmission Dynamics of Pertussis Using Recursive Point Process and SEIR model, Ph.D. Thesis, UCLA, 2019. [16] P. D. O’Neill, Introduction and snapshot review: relating infectious disease transmission models to data, Statistics in Medicine 29(20) (2010), 2069-2077. [17] N. C. Grassly and C. Fraser, Mathematical models of infectious disease transmission, Nature Reviews Microbiology 6(6) (2008), 477-487. [18] D. J. Daley and D. V. Jones, An Introduction to the Theory of Point Processes: Elementary Theory of Point Processes, Springer, 2003. [19] A. Reinhart, A review of self-exciting spatio-temporal point processes and their applications, Statistical Science 33(3) (2018), 299-318. [20] Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes, Journal of the American Statistical Association 83(401) (1988), 9-27. [21] S. Cauchemez, P.-Y. Boëlle, C. A. Donnelly, N. M. Ferguson, G. Thomas, G. M. Leung, A. J. Hedley, R. M. Anderson and A.-J. Valleron, Realtime estimates in early detection of SARS, Emerging Infectious Diseases 12(1) (2006), 110. [22] Y. Ogata, The asymptotic behaviour of maximum likelihood estimators for stationary point processes, Annals of the Institute of Statistical Mathematics 30(1) (1978), 243-261. [23] F. P. Schoenberg, A note on the consistent estimation of spatial-temporal point process parameters, Statistica Sinica (2016), 861-879. [24] D. Marsan and O. Lengline, Extending earthquakes’ reach through cascading, Science 319(5866) (2008), 1076-1079. [25] J. Zhuang, Y. Ogata and D. Vere-Jones, Analyzing earthquake clustering features by using stochastic reconstruction, Journal of Geophysical Research: Solid Earth 109(B5) (2004), 1-17. [26] J. Park, F. P. Schoenberg, A. L. Bertozzi and P. J. Brantingham, Investigating clustering and violence interruption in gang-related violent crime data using spatial-temporal point processes with covariates, Journal of the American Statistical Association 116(536) (2021), 1674-1687. DOI: 10.1080/01621459.2021.1898408 [27] J. G. Rasmussen, Bayesian inference for Hawkes processes, Methodology and Computing in Applied Probability 15(3) (2013), 623-642. [28] G. Mohler, Modeling and estimation of multi-source clustering in crime and security data, The Annals of Applied Statistics 7(3) (2013), 1525-1539. [29] H. Mei and J. Eisner, The neural Hawkes process: a neurally self-modulating multivariate point process, 2016. arXiv preprint arXiv:1612.09328. [30] Y. Ogata, Space-time point-process models for earthquake occurrences, Annals of the Institute of Statistical Mathematics 50(2) (1998), 379-402. [31] G. Mohler, M. B. Short, F. Schoenberg and D. Sledge, Analyzing the impacts of public policy on COVID-19 transmission: A case study of the role of model and dataset selection using data from Indiana, Statistics and Public Policy (2020), 1-17. [32] F. P. Schoenberg, M. Hoffmann and R. J. Harrigan, A recursive point process model for infectious diseases, Annals of the Institute of Statistical Mathematics 71(5) (2019), 1271-1287. [33] R. Harrigan, M. Mossoko, E. Okitolonda-Wemakoy, F. P. Schoenberg, N. Hoff, P. Mbala, S. R. Wannier, S. D. Lee, S. Ahuka-Mundeke, T. B. Smith, B. Selo, B. Njokolo, G. Rutherford, A. W. Rimoin, J. J. M. Tamfum and J. Park, Realtime predictions of the 2018-2019 Ebola virus disease outbreak in the Democratic Republic of the Congo using Hawkes point process models, Epidemics 28 (2019), 100354. [34] J. Park, A. W. Chaffee, R. J. Harrigan and F. P. Schoenberg, A nonparametric Hawkes model of the spread of Ebola in West Africa, Journal of Applied Statistics (2020), 1-17. [35] F. P. Schoenberg, Nonparametric estimation of variable productivity Hawkes processes, 2020. arXiv preprint arXiv:2003.08858. [36] J. Wallinga and P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, American Journal of Epidemiology 160(6) (2004), 509-516. [37] C. Farrington, M. Kanaan and N. Gay, Branching process models for surveillance of infectious diseases controlled by mass vaccination, Bio-statistics 4(2) (2003), 279-295. [38] S. Meyer, L. Held and M. Höhle, Spatio-temporal analysis of epidemic phenomena using the R package surveillance, 2014. arXiv preprint arXiv:1411.0416. [39] R. A. Clements, F. P. Schoenberg and D. Schorlemmer, Residual analysis methods for space-time point processes with applications to earthquake forecast models in California, The Annals of Applied Statistics (2011), 2549-2571. [40] R. A. Clements, F. P. Schoenberg and A. Veen, Evaluation of space-time point process models using super-thinning, Environmetrics 23(7) (2012), 606-616. [41] J. D. Zechar, D. Schorlemmer, M. J. Werner, M. C. Gerstenberger, D. A. Rhoades and T. H. Jordan, Regional earthquake likelihood models I: First-order results, Bulletin of the Seismological Society of America 103(2A) (2013), 787-798. [42] A. Bray, K. Wong, C. D. Barr, F. P. Schoenberg, Voronoi residual analysis of spatial point process models with applications to California earthquake forecasts, The Annals of Applied Statistics 8(4) (2014), 2247-2267. [43] J. S. Gordon, R. A. Clements, F. P. Schoenberg and D. Schorlemmer, Voronoi residuals and other residual analyses applied to CSEP earthquake forecasts, Spatial Statistics 14 (2015), 133-150. [44] D. Schorlemmer, M. J. Werner, W. Marzocchi, T. H. Jordan, Y. Ogata, D. D. Jackson, S. Mak, D. A. Rhoades, M. C. Gerstenberger, N. Hirata, M. Liukis, P. J. Maechling, A. Strader, M. Taroni, S. Wiemer, J. D. Zechar and J. Zhuang, The collaboratory for the study of earthquake predictability: achievements and priorities, Seismological Research Letters 89(4) (2018), 1305-1313. [45] C. J. Vishal Tomar, Auquan data science, June 2020. covid19-infection-model. auquan.com [Online; accessed 19-June-2020]. [46] T. Yamana, S. Pei and J. Shaman, Projection of COVID-19 cases and deaths in the us as individual states re-open may 4, 2020, medRxiv, 2020. [47] J. Gu, H. Yan, Y. Huang, Y. Zhu, H. Sun, X. Zhang, Y. Wang, Y. Qiu and S. Chen, Better strategies for containing COVID-19 epidemics-a study of 25 countries via an extended varying coefficient SEIR model, medRxiv, 2020. [48] J. C. Lemaitre, K. H. Grantz, J. Kaminsky, H. R. Meredith, S. A. Truelove, S. A. Lauer, L. T. Keegan, S. Shah, J. Wills, K. Kaminsky, J. Perez-Saez, J. Lessler and E. C. Lee, A scenario modeling pipeline for COVID-19 emergency planning, medRxiv, 2020. [49] A. P. Guido Espana, Notre Dame mobility, June 2020. github.com /TAlexPerkins/covid19_NDmobility_forecasting [Online; accessed 19-June-2020]. [50] Q. Gu, UCLA statistical machine learning lab, June 2020. covid19.uclaml.org [Online; accessed 19-June-2020]. [51] E. B. Phil Arevalo, Forecasting SARS-CoV-2 dynamics for the state of Illinois, June 2020. github.com/cobeylab/covid_IL [Online; accessed 19-June-2020]. [52] Y. Cramer, Y. Huang, Y. Wang, E. L. Ray, M. Cornell, J. Bracher, A. Brennen, Alvaro, J. C. Rivadeneira, A. Gerding, K. House, D. Jayawardena, A. H. Kanji, A. Khandelwal, K. Le, J. Niemi, A. Stark, A. Shah, N. Wattanchit, M. W. Zorn, N. G. Reich, The United States COVID-19 Forecast Hub dataset, medRxiv (2021), URL: https://www.medrxiv.org/content/10.1101/2021.11.04.21265886v1. [53] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character 115(772) (1927), 700-721. [54] S. A. Levin and V. Andreasen, Mathematical models of infectious diseases, Forefronts 2(8) (1986), 4-6. [55] P. Hernández, C. Pena, A. Ramos and J. Gómez-Cadenas, A simple formulation of non-Markovian SEIR, arXiv preprint arXiv:2005.09975, 2020. [56] M. V. Ozanne, G. D. Brown, J. J. Oleson, I. D. Lima, J. W. Queiroz, S. M. Jeronimo, C. A. Petersen and M. E. Wilson, Bayesian compartmental model for an infectious disease with dynamic states of infection, Journal of Applied Statistics 46(6) (2019), 1043-1065. [57] D. Clancy, P. D. O’Neill, Bayesian estimation of the basic reproduction number in stochastic epidemic models, Bayesian Analysis 3(4) (2008), 737-757. [58] G. Frasso and P. Lambert, Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone, Biostatistics 17(4) (2016), 779-792. [59] J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, The stochastic SEIR model before extinction: computational approaches, Applied Mathematics and Computation 265 (2015), 1026-1043. [60] P. Montagnon, A stochastic SIR model on a graph with epidemiological and population dynamics occurring over the same time scale, Journal of Mathematical Biology 79(1) (2019), 31-62. [61] G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): a review, BMC Medicine 12(1) (2014), 196. [62] K. R. Godfrey and M. J. Chapman, Identifiability and indistinguishability of linear compartmental models, Mathematics and Computers in Simulation 32(3) (1990), 273-295. [63] E. Walter and Y. Lecourtier, Unidentifiable compartmental models: what to do?, Mathematical Biosciences 56(1-2) (1981), 1-25. [64] T. Sauer, T. Berry, D. Ebeigbe, M. M. Norton, A. Whalen and S. J. Schiff, Identifiability of infection model parameters early in an epidemic, medRxiv, 2020. [65] G. Stabile and G. L. Torrisi, Risk processes with non-stationary Hawkes claims arrivals, Methodology and Computing in Applied Probability 12(3) (2010), 415-429. [66] L. J. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Mathematical Biosciences 124(1) (1994), 83-105. [67] S. Merler, M. Ajelli, L. Fumanelli and A. Vespignani, Containing the accidental laboratory escape of potential pandemic influenza viruses, BMC Medicine 11(1) (2013), 252. [68] L. Worden, R. Wannier, N. A. Hoff, K. Musene, B. Selo, M. Mossoko, E. Okitolonda-Wemakoy, J. J. M. Tamfum, G. W. Rutherford, T. M. Lietman, A. W. Rimoin, T. C. Porco and J. D. Kelly, Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019, PLoS Neglected Tropical Diseases 13(8) (2019), e0007512. [69] N. D. Evans, L. J. White, M. J. Chapman, K. R. Godfrey and M. J. Chappell, The structural identifiability of the susceptible infected recovered model with seasonal forcing, Mathematical Biosciences 194(2) (2005), 175-197. [70] K. Roosa and G. Chowell, Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models, Theoretical Biology and Medical Modelling 16(1) (2019), 1. [71] N. Hengartner and P. Fenimore, Quantifying model form uncertainty of epidemic forecasting models from incidence data, Online Journal of Public Health Informatics 10(1) (2018), e21. [72] D. Osthus, K. S. Hickmann, P. C. Caragea, D. Higdon and S. Y. Del Valle, Forecasting seasonal influenza with a state-space SIR model, The Annals of Applied Statistics 11(1) (2017), 202. [73] Arroyo Marioli, Francisco and Bullano, Francisco and Kucinskas, Simas and Rondón-Moreno, Carlos, Tracking R of COVID-19: A New Real-Time Estimation Using the Kalman Filter (May 10, 2020). Available at SSRN: https://ssrn.com/abstract=3581633 or http://dx.doi.org/10.2139/ssrn.3581633. [74] New Jersey COVID-19 Information Hub, How is the state using data to make decisions and slow the spread of COVID-19, May 2020. covid19.nj.gov [Online; accessed 16-May-2020]. [75] A. Kaplan, J. Park, C. Kresin and F. Schoenberg, Nonparametric estimation of recursive point processes with application to Mumps in Pennsylvania, Biometrical Journal 2020. [76] B. Yuan, Multivariate Hawkes processes for real-time COVID-19 death forecasting, 2020. Preprint. [77] S. F. Ardabili, A. Mosavi, P. Ghamisi, F. Ferdinand, A. R. Varkonyi-Koczy, U. Reuter, T. Rabczuk and P. M. Atkinson, COVID-19 outbreak prediction with machine learning, Algorithms 13(10) (2020), 249. [78] J. B. Ryan Best, Where the latest COVID-19 models think we are headed - and why they disagree, May 2020. fivethirtyeight.com [Online; posted 24-May-2020]. [79] A. Pan, L. Liu, C. Wang, H. Guo, X. Hao, Q. Wang, J. Huang, N. He, H. Yu, X. Lin, S. Wei and T. Wu, Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China, The Journal of the American Medical Association 323(19) (2020), 1915-1923. doi:10.1001/jama.2020.6130. [80] C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, C. H. Pang, Y. Zhang, Z. Chen and X.-H. Zhou, Estimation of the time-varying reproduction number of COVID-19 outbreak in China, International Journal of Hygiene and Environmental Health (2020), 113555. [81] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton, M. Monod, Imperial College COVID-19 Response Team, A. C. Ghani, C. A. Donnelly, S. Riley, M. A. C. Vollmer, N. M. Ferguson, L. C. Okell and S. Bhatt, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature 584(7820) (2020), 257-261. [82] N. Sood, P. Simon, P. Ebner, D. Eichner, J. Reynolds, E. Bendavid and J. Bhattacharya, Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10-11, 2020, Journal of the American Medical Association 2020. [83] E. Bendavid, B. Mulaney, N. Sood, S. Shah, E. Ling, R. Bromley-Dulfano, C. Lai, Z. Weissberg, R. Saavedra, J. Tedrow, D. Tversky, A. Bogan, T. Kupiec, D. Eichner, R. Gupta, J. P. A. Ioannidis and J. Bhattacharya, COVID-19 antibody seroprevalence in Santa Clara County, California, MedRxiv, 2020. [84] T. Lumley, Counting rare things is hard, April 2020. statschat.org.nz [Online; accessed 16-May-2020]. [85] B. Srinivasan, Peer review of COVID-19 antibody seroprevalence in Santa Clara County, California, April 2020. medium.com/@balajis [Online; accessed 16-May-2020]. [86] G. Pinter, I. Felde, A. Mosavi, P. Ghamisi and R. Gloaguen, COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach, A Hybrid Machine Learning Approach (May 2, 2020), 2020. [87] A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proceedings of the Royal Society of London, Series B: Biological Sciences 268(1470) (2001), 985-993. [88] H. J. Wearing, P. Rohani and M. J. Keeling, Appropriate models for the management of infectious diseases, PLoS Medicine 2(7) (2005), 621-627. [89] J. Fintzi, D. Bayer, I. Goldstein, K. Lumbard, E. Ricotta, S. Warner, L. M. Busch, J. R. Strich, D. S. Chertow, D. M. Parker, B. Boden-Albala, A. Dratch, R. Chhuon, N. Quick, M. Zahn and V. N. Minin, Using multiple data streams to estimate and forecast SARS-CoV-2 transmission dynamics, with application to the virus spread in Orange County, California, 2020. arXiv preprint arXiv:2009.02654. [90] D. Champredon, J. Dushoff and D. J. Earn, Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation, SIAM Journal on Applied Mathematics 78(6) (2018), 3258-3278. [91] S. Mishra, T. Berah, T. A. Mellan, H. J. T. Unwin, M. A. Vollmer, K. V. Parag, A. Gandy, S. Flaxman and S. Bhatt, On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective, 2020. arXiv preprint arXiv:2006.16487. [92] A. Daw and J. Pender, The queue-Hawkes process: Ephemeral self-excitement, 2018. arXiv preprint arXiv:1811.04282. [93] Y. Ogata, On Lewis’ simulation method for point processes, IEEE Transactions on Information Theory 27(1) (1981), 23-31. [94] P. W. Lewis and G. S. Shedler, Simulation of nonhomogeneous Poisson processes by thinning, Naval Research Logistics Quarterly 26(3) (1979), 403-413. [95] A. G. Hawkes and D. Oakes, A cluster process representation of a self-exciting process, Journal of Applied Probability 11(3) (1974), 493-503.
|