Keywords and phrases: nonlocal operator, mild solution, finite-approximate controllability, Brownian motion, Poisson jump.
Received: December 10, 2021; Revised: January 12, 2022; Accepted: February 4, 2022; Published: February 14, 2022
How to cite this article: Qiaobin Fu and Yongqiang Fu, Finite-approximate controllability of nonlocal stochastic control systems driven by hybrid noises, Advances in Differential Equations and Control Processes 27 (2022), 1-27. DOI: 10.17654/0974324322010
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003), 1604-1622. [2] R. Sakthivel, S. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comput. Math. Appl. 63 (2012), 660-668. [3] N. Sukavanam and S. Kumar, Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory. Appl. 151 (2011), 373-384. [4] R. Sakthivel, Y. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl. 62 (2011), 1451-1459. [5] N. I. Mahmudov and S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math. 259 (2014), 194-204. [6] R. Sakthivel, Y. Ren, A. Debbouch and N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal. 95 (2016), 2361-2382. [7] Q. M. Xiang and P. X. Zhu, Approximate controllability of fractional delay evolution inclusions with non-compact semigroups, Optimization 69 (2020), 553-574. [8] F. D. Ge, H. C. Zhou and C. H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Appl. Math. Comput. 275 (2016), 107-120. [9] Z. X. Tai and X. C. Wang, Controllability of fractional-order impulsive neutral functional infinite delay integro-differential systems in Banach spaces, Appl. Math. Lett. 22 (2009), 1760-1765. [10] J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput. 254 (2015), 20-29. [11] R. Sakthivel, N. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput. 218 (2012), 10334-10340. [12] X. W. Li, Z. H. Liu, J. Li and C. Tisdell, Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces, Acta Math. Sci. 39 (2019), 229-242. [13] H. Yang, R. P. Agarwal and Y. Liang, Controllability for a class of integro-differential evolution equations involving non-local initial conditions, Internat. J. Control 90 (2017), 2567-2574. [14] N. I. Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach, Fract. Calc. Appl. Anal. 21 (2018), 919-936. [15] N. I. Mahmudov, Variational approach to finite-approximate controllability of Sobolev-type fractional systems, J. Optim. Theory Appl. 184 (2020), 671-686. [16] A. Cartea and D. del Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E 76 (2007), 041105. [17] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993. [18] X. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing, Chichester, UK, 2007. [19] M. D. Paola, G. Alotta, G. Failla, A. Pirrotta, A. Sofi and M. Zingales, The mechanically based non-local elasticity: an overview of main results and future challenges, Phil. Trans. R. Soc. A 371 (2013), 20120433. [20] S. Patnaik, S. Sidhardh and F. Semperlotti, Towards a unified approach to nonlocal elasticity via fractional-order mechanics, Int. J. Mech. Sci. 189 (2021), 105992. [21] M. D. Paola and M. Zingales, Long-range cohesive interactions of non-local continuum faced by fractional calculus, Int. J. Solids Struct. 45 (2008), 5642-5659. [22] S. Patnaik and F. Semperlotti, A generalized fractional-order elastodynamic theory for non-local attenuating media, Proc. A 476 (2020), 20200200. [23] G. Jumarie, Fractional Brownian motions via random walk in the complex plane and via fractional derivative, Comparison and further results on their Fokker Planck equations, Chaos Solitons Fractals 22 (2004), 907-925. [24] P. Chow, Stochastic Partial Differential Equations, 2nd ed., Advances in Applied Mathematics, CRC Press, Boca Raton, FL, USA, 2015. [25] J. C. Pedjeu and G. S. Ladde, Stochastic fractional differential equations: modeling, method and analysis, Chaos Solitons Fractals 45 (2012), 279-293. [26] E. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. [27] C. X. Miao, B. Q. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal. 68 (2008), 461-484.
|