Abstract: Purpose of this paper: In this article we have analyzed the relationship among clinical variables: age, sex, pathological history of interest of the deceased; medicolegal: initial cause of death, immediate cause of death, origin of death and medicolegal etiology of death, and histological or anatomopathological: anthracosis, arteriosclerosis, congestion, fatty degeneration, edema, emphysema, sclerosis, hemorrhage, inflammation, necrosis and other casual or incidental findings from the study of medicolegal autopsies chosen at random from no Covid-19 victims in pandemic times.
Design/methodology/approach: For the analysis of the relationships among the different variables, parametric and non-parametric techniques have been used: t-Student, ANOVA, contingency coefficient and Kruskal-Wallis.
Findings: The relationship among these variables has been significant (p-value 0.05): Sex-age (0.005), Sex-pathological history (0.000), Sex-immediate cause of death (0.037), Pathological history-initial cause of death (0.036), Pathological history-medicolegal etiology (0.043), Initial cause of death-immediate cause of death (0.000) and Initial cause of death-origin of death (0.000), Immediate cause of death-origin of death (0.000).
Research limitations/implications: We intend to expand the study in the future. |
Keywords and phrases: pathology, histology, forensic, legal, medicine.
Received: December 2, 2021; Accepted: January 19, 2022; Published: January 25, 2022
How to cite this article: Elena Martín Pérez, María Dolores Ludeña de la Cruz, María Sonsoles Castro Herranz and Quintín Martín Martín, Statistical study of medicolegal autopsias, JP Journal of Biostatistics 19 (2022), 95-106. DOI: 10.17654/0973514322006
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] U. Hammer, V. Blaas, A. Büttner and M. Philipp, Autopsies for anatomical teaching and training in clinical forensic medicine, Chirurgie 86(12) (2015), 1128-1131. [2] I. S. De Macedo, L. F. L. Dinardi, T. V. Pereira, Lyna Kyria Rodrigues de Almeida, Thaisa Silveira Barbosa, Luiz Alberto Benvenuti, Silvia Moreira Ayub-Ferreira, Edimar Alcides Bocchi, Victor Sarli Issa, Thromboembolic findings in patients with heart failure at autopsy, Cardiovascular Pathology 35 (2018), 23-28. [3] A. S. Ozuynuk, A. F. Erkan, B. Ekici, N. Erginel-Unaltuna and N. Coban, Cholesterol-related gene variants are associated with diabetes in coronary artery disease patients, Molecular Biology Reports, 2021. [4] Y. Zhu, X. Xian, Z. Wang, Y. Bi, Q. Chen, X. Han, D. Tang and R. Chen, Research progress on the relationship between atherosclerosis and inflammation, Biomolecules 8(3) (2018), 80. [5] H. S. Lu, A. M. Schmidt, R. A. Hegele, N. Mackman, D. J. Rader, C. Weber and A. Daugherty, Annual report on sex in preclinical studies: arteriosclerosis, thrombosis, and vascular biology publications in 2018, Arteriosclerosis Thrombosis and Vascular Biology 40(1) (2020), e1-e9. [6] Claire E. V. French, John David Rutherford, Louise Goossens and Marianne Tiemensma, The relationship between earlobe creases and the presence, extent, and severity of coronary artery atherosclerosis: A regional population-based autopsy study, Am. J. Forensic Med. Pathol. 42(2) (2021), 155-159. [7] Elisa Macoin, Pascal Kintz, Anne Gressel, Pierre Leyendecker, Jean-Sébastien Raul, Alexis Walch, The importance of autopsy in a case of digestive perforation undetected by postmortem computed tomography, Am. J. Forensic Med. Pathol. 42(2) (2021), 201-204. [8] E. Guareschi, Forensic Pathology Case Studies, Academic Press, 2020. [9] M. A. Sens and R. Hughes, Diagnostic Pathology: Forensic Autopsy, Elsevier, 2020. [10] T. Kisseleva and D. Brenner, Molecular and cellular mechanisms of liver fibrosis and its regression, Nature Reviews Gastroenterology and Hepatology 18(3) (2021), 151-166. [11] M. Mack, Inflammation and fibrosis, Matrix Biology 68-69 (2018), 106-121. [12] R. Diallo-Danebrock, M. Abbas, D. Groß and U. Kellner, History of the anatomical and clinical autopsy, Pathologe 40(1) (2019), 93-100. [13] D. Mao, N. Zhou, D. Zheng, J. Yue, Q. Zhao, B. Luo, D. Guan, Y. Zhou, B. Hu and J. Cheng, Guide to forensic pathology practice for death cases related to coronavirus disease 2019 (COVID-19) (Trial draft), Forensic Sciences Research 5(1) (2020), 1-7. [14] J. J. Santos Mateo, M. Sabater Molina and J. R. Gimeno Blanes, Hypertrophic cardiomyopathy, Med. Clin. (Barc) 150(11) (2018), 434-442. [15] H. Raju, S. Parsons, T. N. Thompson, N. Morgan, D. Zentner, A. H. Trainer, P. A. James, I. M. Winship, J. M. Kalman and J. Vohra, Insights into sudden cardiac death: exploring the potential relevance of non-diagnostic autopsy findings, European Heart Journal 40(10) (2019), 831-838. [16] X. Hu, E. S. Yi and J. H. Ryu, Aspiration-related deaths in 57 consecutive patients: autopsy study, Plos One 9(7) (2014), e103795. [17] Y. G. Son, J. Shin and H. G. Ryu, Pneumonitis and pneumonia after aspiration, Journal of Dental Anesthesia and Pain Medicine 17(1) (2017), 1-12. [18] P. Molina, J. San-Sánchez, M. Fenollosa, M. Martínez Matilla, J. Giner and E. Zorio, Arrhythmogenic cardiomyopathy with left ventricular involvement versus ischemic heart disease: lessons learned from the family study and the reviewed autopsy of a young male, Forensic Sciences Research 4(3) (2019), 274-279. [19] E. O. Essien, P. Rali and S. C. Mathai, Pulmonary embolism, Medical Clinics of North America 103(3) (2019), 549-564. [20] G. Y. Im, Acute alcoholic hepatitis, Clinical Liver Disease 23(1) (2019), 81-98.
|