Keywords and phrases: generalized α-nonexpansive, multivalued mapping, convergence theorems.
Received: November 14, 2021; Accepted: December 29, 2021; Published: January 24, 2022
How to cite this article: Makbule Kaplan Özekes, A three-step iteration process for generalized α-nonexpansive multivalued mapping in Banach spaces, JP Journal of Fixed Point Theory and Applications 16(2-3) (2021), 93-106. DOI: 10.17654/FP016230093
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] R. Sadhu, P. Majee and C. Nahak, Fixed point theorems on generalized α-nonexpansive multivalued mappings, J. Anal. 29 (2021), 1165-1190. [2] R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38(2) (2017), 248-266. [3] M. Eslamian and A. Abkar, One-step iterative process for a finite family of multivalued mappings, Math. Comput. Modelling 54(1-2) (2011), 105-111. [4] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(4) (1967), 591-597. [5] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30(2) (1969), 475-488. [6] H. Piri, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Numer. Algorithms 81(3) (2019), 1129-1148. [7] H. İqbal, M. Abbas and S. M. Hüsnine, Existence and approximation of fixed points of multivalued generalized -nonexpansive mappings in Banach spaces, Numer. Algorithms 85(3) (2020), 1029-1049. [8] S. Maldar, F. Gürsoy, Y. Atalan and M. Abbass, On a three-step iteration process for multivalued Reich-Suzuki type -nonexpansive and contractive mappings, J. Appl. Math. Comput. (2021), 1-21. https://doi.org/10.1007/s12190-021-01552-7. [9] E. Hacıoğlu and V. Karakaya, Some fixed point results for a new multivalued hybrid mapping in geodesic spaces, Thai J. Math. 19(2) (2021), 571-581. [10] K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, Journal of Linear and Topological Algebra (JLTA) 7(2) (2018), 87-100. [11] A. M. Harder, Fixed point theory and stability results for fixed points iteration procedures, Ph.D. Thesis, University of Missouri-Rolla, 1987. [12] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113(3) (1991), 727-731. [13] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340(2) (2008), 1088-1095. [14] H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44(2) (1974), 375-380. [15] T. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc. 80(6) (1974), 1123-1126. [16] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007. [17] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer, New York, 2009. [18] H. A. Abass, A. A. Mebawondu and O. T. Mewomo, Some results for a new three steps iteration scheme in Banach spaces, Bull. Transilv. Univ. Braşov Ser. III 11(60)(2) (2018), 1-18.
|