Keywords and phrases: causality, Lipschitz continuity, monotone maximal operator, nonlinear feedback system, normality, reflexive Banach space.
Received: November 7, 2021; Accepted: December 24, 2021; Published: January 17, 2022
How to cite this article: Messaoudi Khelifa, Normality of nonlinear feedback systems over reflexive Banach space, International Journal of Functional Analysis, Operator Theory and Applications 13(2) (2021), 85-111. DOI: 10.17654/0975291921003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Vaclav Dolezal, Estimating the difference of operator inverses and sensitivity of systems, Nonlinear Anal. 15(10) (1990), 921-930. [2] Vaclav Dolezal, Feedback systems described by monotone operators, SIAM J. Control Optim. 17(3) (1979), 339-364. [3] K. Messaoudi, Feedback systems on extended Hilbert space-normality and linearization, Journal of Mathematics Research 12(2) (2020), 28-44. [4] G. Zames, Functional analysis applied to nonlinear feedback systems, IEEE Trans. on Circuit Theory CT-10 (1963), 392-404. [5] H. Brezis, Analyse Fonctionnelle, Théorie et Application, Masson, Paris, 1983. [6] Vaclav Dolezal, An approximation theorem for a Hammerstein-type equations and applications, SIAM J. Math. Anal. 11(2) (1980), 392-399. [7] Vaclav Dolezal, Robust stability and sensitivity of input-output systems over extended spaces, Part 1, Robust stability, Circuit, Systems and Signal Processing 10(3) (1991), 361-389. [8] Vaclav Dolezal, Some results on the invertibility of nonlinear operators, Circuit, Systems and Signal Processing 17(6) (1998), 683-690. [9] Vaclav Dolezal, The invertibility of operators and contraction mapping, Circuit, Systems and Signal Processing 18(26) (1999), 183-187. [10] Vaclav Dolezal, Approximate inverses of operators, Circuit, Systems and Signal Processing 22(1) (2003), 69-75. [11] F. E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Anal. 175 (1968), 89-113. [12] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier Grenoble 18(1) (1968), 115-175. [13] R. R. Phelps, Lectures on maximal monotone operators, Lecture given at Prague/Paseky Summer School, Czech Republic, 1993, pp. 1-30. [14] M. M. Alves, Maximal monotone operators in general Banach spaces, 2016. http://mtm.ufsc.br/~coloquio/20162/slides/alves.pdf [15] C. A. Desoer and M. Vidyasagar, Feedback Systems, Input-output Properties, Academic Press, New York, 1975. [16] I. W. Sandberg, On the L2-boundedness of solutions of nonlinear functional equations, The Bell Systems Tech. J. 43 (1968), 1601-1608.
|