Keywords and phrases: equivalence method, exterior differential systems, planes, G-structures.
Received: September 20, 2021; Revised: November 17, 2021; Accepted: November 24, 2021; Published: January 14, 2022
How to cite this article: Moheddine Imsatfia and Anouar Houmia, Application of Cartan’s equivalence method to distribution of planes, Advances in Differential Equations and Control Processes 26 (2022), 113-130. DOI: 10.17654/0974324322008
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] A. G. Kushner, Classification of mixed type Monge-Ampère equations, Geometry in Partial Differential Equations, World Sci. Publ., River Edge, NJ, 1994, pp. 173-188. [2] A. G. Kushner, A contact linearization problem for Monge-Ampère equations and Laplace invariants, Acta Appl. Math. 101(1) (2008), 177-189. [3] A. G. Kushner, On contact equivalence of Monge-Ampère equations to linear equations with constant coefficients, Acta Appl. Math. 109(1) (2010), 197-210. [4] B. S. Kruglikov, Classification of Monge-Ampère equations with two variables, Geometry and topology of caustics — CAUSTICS ‘98 (Warsaw), Banach Center Publ., 50, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 179-194. [5] I. Moheddine, Géométrie de Cartan fondée sur la notion d’aire et application du problème d’équivalence, Ph.D. Thesis, 2012. [6] I. Moheddine, Application of equivalence method to classify Monge-Ampère equations of elliptic type, The Australian Journal of Mathematical Analysis and Applications (AJMAA) 11(1) (2014), 1-13, Article 12. [7] V. Lychagin and V. Rubtsov, Local classification of Monge-Ampère equations, Soviet Math. Dokl. 28(2) (1983), 328-332. [8] N. Sylvain, Implantation et nouvelles applications de la méthode d’équivalence de Cartan, Ph.D. Thesis, 2003. [9] P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995. [10] Robert Bryant, Phillip Griffiths and Daniel Grossman, Exterior differential systems and Euler-Lagrange partial differential equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2003. [11] T. Morimoto, La géométrie des équations de Monge-Ampère, C. R. Acad. Sci. Paris Sér. A-B 289(1) (1979), A25-A28. [12] T. Morimoto, Le problème d’équivalence des équations de Monge-Ampère, C. R. Acad. Sci. Paris Sér I. Math. 289 (1979), 63-66. [13] V. Lychagin, A. Kushner and V. Rubtsov, Contact geometry and non-linear differential equations, Encyclopedia of Mathematics and its Application, Volume 61, Cambridge University Press, Cambridge, 2007. [14] V. Lychagin, Lectures on Geometry of Differential Equations, Volume 1, La Sapienza, Rome, 1993. [15] V. Lychagin, V. N. Rubtsov and I. V. Chekalov, A classification of Monge-Ampère equations, Ann. Sci. École Norm. Sup. (4) 26(3) (1993), 281-308.
|