Keywords and phrases: search space, bounds, estimation, maximum likelihood, order statistics, three-parameter gamma model, Differential Evolution.
Received: November 18, 2021; Accepted: December 23, 2021; Published: January 7, 2022
How to cite this article: Ouindllassida Jean-Etienne Ouédraogo, A simple and efficient method for fitting the three-parameter Gamma distribution to given data, Universal Journal of Mathematics and Mathematical Sciences 15 (2022), 31-42. DOI: 10.17654/2277141722003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] Aladag Cagdas Hakan Acitas Sukru and Senoglu Birdal, A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: an application to the strengths of glass fibre data, Reliability Engineering and System Safety, Elsevier 183(C) (2019), 116-127. [2] David Ardia, Kris Boudt, Peter Carl, Katharine M. Mullen and Brian G. Peterson, Differential evolution with DEoptim, The R Journal 3(1) (2011), 27-34. [3] R. C. H. Cheng and T. C. Iles, Embedded models in three-parameter distributions and their estimation, J. Roy. Statist. Soc. Ser. B 52(1) (1990), 135-149. [4] Hai Dang and Govinda Weerakkody, Bounds for the maximum likelihood estimates in two-parameter gamma distribution, J. Math. Anal. Appl. 245 (2000), 1-6. [5] N. Balakrishnan Hideki Nagatsuka, Parameter and quantile estimation for the three-parameter gamma distribution based on statistics invariant to unknown location, J. Statist. Plann. Inference 142 (2012), 2087-2102. [6] Rainer M. Storn, Kenneth V. Price and Jouni A. Lampinen, Differential Evolution – A Practical Approach to Global Optimization, Springer-Verlag, Berlin Heidelberg, 2006. [7] R. Vani Lakshmi and V. S. Vaidyanathan, Three-parameter gamma distribution: estimation using likelihood, spacings and least squares approach, Journal of Statistics and Management Systems 19(1) (2016), 37-53. [8] L. J. Norman, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, 2nd ed., Volume 1, John Wiley and Sons, New York, 1994. [9] Edoh Katchekpele Ouedraogo O. Jean-Etienne and Tiendrebeogo Simon, Alienor’s approach for Pearson type 3 parameters estimations, Far East Journal of Applied Mathematics 108 (2020), 67-80. [10] R Core Team, R: A language and environment for statistical computing, http://www.Rproject.org/, 2015. [11] G. Casella and C. P. Robert, Monte Carlo integration, Introducing Monte Carlo Methods with R, Springer, New York, NY, 2010. [12] R. L. Smith, Likelihood and modified likelihood estimation for distributions with unknown endpoints, Recent Advances in Life-testing and Reliability, CRC, Boca Raton, FL, 1995. [13] R. L. Smith, Maximum likelihood estimation in a class of nonregular cases, Biometrika 72(1) (1985), 67-90. [14] R. Storn and K. Price, Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (1997), 341-359.
|