Keywords and phrases: Earth’s hydrological cycle, transport equation model, LES approach to turbulence.
Received: October 11, 2021; Accepted: December 3, 2021; Published: December 23, 2021
How to cite this article: Bakary Coulibaly, Emile Danho and N’dri Roger Djue, Modeling and analysis of variances and covariance of liquid water content in a warm and active cloud, Advances and Applications in Fluid Mechanics 27(2) (2021), 67-90. DOI: 10.17654/09734686001
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] M. Antonopoulos-Domis, Large eddy simulation of a passive scalar in isotropic turbulence, J. Fluid Mech. 104 (1981), 55-79. [2] A. Cheng and Kuan-Man Xu, A PDF-based microphysics parameterization for simulation of drizzling boundary layer clouds, Journal of Atmospheric Sciences 66 (2009), 2317-2334. [3] A. Cheng and Kuan-Man Xu, Simulation of shallow cumuli and their transition to deep convective clouds by cloud-resolving models with different third-order turbulence closures, Q. J. R. Meteorol. Soc. 132 (2006), 359-382. [4] E. Danho and N. R. Djué, A model for assessing relative humidity in a convective atmospheric parcel including an entrainment of surrounding air, Rev. IV Sci. Tech. 5 (2004), 71-84. [5] N. R. Djué, E. Danho, M. K. Sangaré, B. Coulibaly and K. K. S. Yanga, Model development for the evolution of active warm clouds and analysis of environmental atmospheric hygrometry impact on rain production, Advances and Applications in Fluid Mechanics 3(1) (2008), 85-103. [6] M. Ekaterina and D. Mironov, Boundary conditions for scalar (co)variances over heterogenous surfaces, Boundary-Layer Meteorol. 169 (2018), 139-150. [7] B. M. Griffin and E. Larson, Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS), Geosci. Model Dev 9 (2016), 4273-4295. [8] S. O. Joseph, O. D. Omololu and L. Olalekan, Analyse of vertical profiles of precipitable liquid water content in tropical climate using micro rain radar, Journal of Geoscience and Environment Protection 7 (2019), 140-155. [9] E. Kessler, On the distribution and continuity of water substance on atmospheric circulation, Meteorol. Monogr. 10(32) (1969), 1-84. [10] M. F. Khairoutdinov and D. A. Randall, Similarity of deep continental cumulus convection as revealed by a three dimensional cloud-resolving model, Journal of Atmospheric Sciences 59 (2002), 2550-2566. [11] M. F. Khairoutdinov and D. A. Randall, Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, result, uncertainties, and sensitivities, Journal of Atmospheric Sciences 60 (2003), 607-625. [12] S. A. Klein, R. Pincus and K. M. Xu, Using cloud-resolving model simulations of deep convection to inform cloud parameterizations in large-scale models, Twelfth ARM Science Team Meeting Proceedings, St. Petersburg, Floride, 2002. [13] E. V. Larson, Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability, Journal of Atmospheric Sciences 58 (2001), 1117-1128. [14] B. F. Lipps, A study of turbulence parameterization in cloud model, Journal of Atmospheric Sciences 34 (1977), 1751-1772. [15] C. H. Moeng and P. P. Sullivan, A mixed scheme for subgrid-scale fluxes in cloud resolving models, J. Atmos. Sci. 67 (2010), 3692-3704. [16] A. S. Neto, O. Grand, O. Métais and M. Lesieur, A numerical investigation of the coherent structures of turbulence behind a backward-facing step, J. Fluid Mech. 256 (1993), 1-25. [17] E. Perraud, F. Couvreux, S. Malardel, C. Luc, V. Masson and O. Thouron, Evaluation of statistical distributions for the parameterization of subgrid boundary-layer clouds, Boundary-Layer Meteorol. 140 (2011), 263-294. [18] J. L. Redelsperger and G. Sommeria, Methode de representation de la turbulence d’echelle inferieure a la maille pour un modèle tri-dimensionnel de convection nuageuse, Boundary-Layer Meteorol 21 (1981), 509-530. [19] J. C. Robert and J. B. Moncrieff, A functional approach to vertical transport of scalars in the atmospheric surface layer, Boundary-Layer Meteorology 173 (2019), 373-408. [20] R. R. Rogers, A short course in cloud physics, Pergamon Press, 1976. [21] L. Rui, J. Guo, Y. Fu, Q. Min, Y. Wang, X. Gao and X. Dong, Estimating the vertical profiles of cloud water content in warm rain clouds, Journal of Geophysical Research 10 (2015), 250-266. [22] P. Sagaut, Numerical simulations of separated flows with subgrid models, Rech. Aéro. 1 (1996), 51-63. [23] V. Schemann and A. Seifert, A budget Analysis of the variances of temperature and moisture in precipitating shallow cumulus convection, Boundary-Layer Meteorol. 163 (2017), 375-373. [24] S. A. Smith and P. R. Jonas, A diagnostic model of turbulent transport in a cumulus cloud layer, Atmospheric Research 39 (1995), 127-143. [25] G. Sommeria and J. W. Deardorff, Subgrid-scale condensation in models of non precipitating cloud, J. Atmos. Sci. 34 (1977), 344-355. [26] T. Spanossova and S. Nikolov, A hierarchy of nonlinear multiparametric models of cloud dynamics and microphysics, Atmospheric Research 78 (2005), 93-102. [27] U. Wacker, Structural stability in cloud physics using parameterized microphysics, Beitr. Phys. Atmosph. 65(3) (1992), 231-249. [28] S. Wang, Q. Wang and G. Feingold, Turbulence, condensation, and liquid water transport in numerically simulated non precipitating stratocumulus clouds, Journal of Atmospheric Sciences 60 (2002), 262-278. [29] R. Wood, P. R. Feld and W. R. Cotton, Autoconversion rate bias in stratiform boundary layer cloud parameterizations, Atmospheric Research 69 (2002), 109 128. [30] X. Zhou, A. S. Ackerman, A. M. Fridling and P. Kollias, Simulation of mesoscale cellular convection in marine stratocumulus, Part I: Drizzling conditions, Journal of the Atmospheric Sciences 75 (2018), 257-274. [31] R. B. Stull, An Introduction of Boundary - Layer Meterology, Kluwer Academic Publishers, Dordrech t/ Boston / London, 1999. [32] S. R. de Roode, P. G. Duynkerke and H. J. Jonker, Large - eddy simulation: How large is large enough? Journal Atmospheric Sciences 61 (2004), 403-421.
|