Keywords and phrases: functional differential equation, exact solution, series solution.
Received: November 5, 2021; Accepted: December 2, 2021; Published: December 20, 2021
How to cite this article: Abdelhalim Ebaid and Hind K. Al-Jeaid, On the exact solution of the functional differential equation Advances in Differential Equations and Control Processes 26 (2022), 39-49. DOI: 10.17654/0974324322003
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
[1] H. I. Andrews, Third paper: Calculating the behaviour of an overhead catenary system for railway electrification, Proc. Inst. Mech. Eng. 179 (1964), 809-846. [2] M. R. Abbott, Numerical method for calculating the dynamic behaviour of a trolley wire overhead contact system for electric railways, Comput. J. 13 (1970), 363-368. [3] G. Gilbert and H. E. H. Davtcs, Pantograph motion on a nearly uniform railway overhead line, Proc. Inst. Electr. Eng. 113 (1966), 485-492. [4] P. M. Caine and P. R. Scott, Single-wire railway overhead system, Proc. Inst. Electr. Eng. 116 (1969), 1217-1221. [5] J. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 322 (1971), 447 468. [6] T. Kato and J. B. McLeod, The functional-differential equation Bull. Amer. Math. Soc. 77 (1971), 891-935. [7] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math. 4 (1993), 1-38. [8] G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl. 213 (1997), 117-132. [9] J. Patade and S. Bhalekar, Analytical solution of pantograph equation with incommensurate delay, Phys. Sci. Rev. 2 (2017). doi:10.1515/psr-2016-0103. [10] L. Fox, D. Mayers, J. R. Ockendon and A. B. Tayler, On a functional differential equation, IMA J. Appl. Math. 8 (1971), 271-307. [11] A. Ebaid, A. Al-Enazi, B. Z. Albalawi and M. D. Aljoufi, Accurate approximate solution of ambartsumian delay differential equation via decomposition method, Math. Comput. Appl. 24(1) (2019), 7. [12] A. A. Alatawi, M. Aljoufi, F. M. Alharbi and A. Ebaid, Investigation of the surface brightness model in the Milky Way via homotopy perturbation method, J. Appl. Math. Phys. 8(3) (2020), 434-442. [13] A. Ebaid and M. Al Sharif, Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon-nanotubes suspended nanofluids, Z. Naturforsch. A 70 (2015), 471-475. [14] A. Ebaid, A. M. Wazwaz, E. Alali and B. Masaedeh, Hypergeometric series solution to a class of second-order boundary value problems via Laplace transform with applications to nanofluids, Commun. Theor. Phys. 67 (2017), 231. [15] A. Ebaid, E. Alali and H. Saleh, The exact solution of a class of boundary value problems with polynomial coefficients and its applications on nanofluids, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017), 156-159. [16] H. O. Bakodah and A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics 6 (2018), 331. [17] A. Ebaid, C. Cattani, A. S. Al Juhani and E. R. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Differ. Equ. 88 (2021). https://doi.org/10.1186/s13662-021-03235-w. [18] N. O. Alatawi and A. Ebaid, Solving a delay differential equation by two direct approaches, Journal of Mathematics and System Science 9 (2019), 54-56. DOI:10.17265/2159-5291/2019.02.003. [19] E. A. Algehyne, E. R. El-Zahar, F. M. Alharbi and A. Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Mathematics 5(1) (2019), 249-258. DOI:10.3934/math.2020016. [20] S. M. Khaled, E. R. El-Zahar and A. Ebaid, Solution of Ambartsumian delay differential equation with conformable derivative, Mathematics 7 (2019), 425.
|