Keywords and phrases: radiation heat transfer, nanosatellite, batteries, heat dissipation, passive thermal analysis, emissivity, absorptivity, computational fluid dynamics.
Received: September 19, 2021; Accepted: October 30, 2021; Published: December 8, 2021
How to cite this article: A. Akka, F. Benabdelouahab and R. Yerrou, Evaluating the temperature toggling of a nanosatellite through a preliminary passive thermal analysis, JP Journal of Heat and Mass Transfer 24(2) (2021), 383-391. DOI: 10.17654/0973576321011
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References
[1] S. Corpino, M. Caldera, F. Nichele, M. Masoero and N. Viola, Thermal design and analysis of a nanosatellite in low earth orbit, Acta Astronautica 115 (2015), 247-261. [2] J. D. Rincon Ortiz, Modeling and implementation of Spacecraft attitude disturbances and control systems in to a Satellite simulator, B. S. Thesis, Universitat Politècnica de Catalunya, 2018. [3] A. Akka and F. Benabdelouahab, Passive thermal analysis of a cubesat by a finite element modeling, JP Journal of Heat and Mass Transfer 21(1) (2020), 133-149, doi: 10.17654/HM021010133. [4] A. Akka and F. Benabdelouahab, Nanosatellite: A progressive vision of performing passive thermal control, AIP Conference Proceedings, AIP Publishing LLC, Vol. 2399, (In Press). [5] A. Akka, F. Benabdelouahab and R. Yerrou, Nanosatellite case study: Issue of heat dissipation across passive thermal analysis, E3S Web Conf., (In Press). [6] A. V. Nenarokomov, L. A. Dombrovsky, I. V. Krainova, O. M. Alifanov and S. A. Budnik, Identification of radiative heat transfer parameters in multilayer thermal insulation of spacecraft, Int. J. Numer. Meth. Heat Fluid Flow 27(3) (2017), 598 614. [7] M. M. Garzon, Development and Analysis of the Thermal Design for the OSIRIS-3U CubeSat, 2012. [8] S. Song, H. Kim and Y.-K. Chang, Design and implementation of 3U CubeSat platform architecture, International Journal of Aerospace Engineering 2018 (2018), Article ID: 2079219. [9] J. Rotteveel and A. R. Bonnema, Thermal control issues for nano-and picosatellites, 57th International Astronautical Congress, 2005, p. B5-6. [10] Pratik Walimbe and Shubham Padekar, Evolutionary Insights into the State-of-the-Art Passive Thermal Control Systems for Thermodynamic Stability of Smallsats, Advanced Engineering Forum, Vol. 35. Trans. Tech. Publications Ltd., 2020. [11] M. Bulut, Ö. R. Sözbir and N. Sözbir, Thermal Control of Turksat 3U Nanosatellite, 2017. [12] CubeSat Kit - Datasheets, http://www.cubesatkit.com/content/datasheet.html (accessed on 16 July, 2021). [13] P. Shinde, A. Quintero, I. Tansel and S. Tosunoglu, CubeSat Thermal Analysis, Presented at 30th Florida Conference on Recent Advances in Robotics, Florida Atlantic University, Boca Raton, Florida, 2017. [14] M. Donabedian and D. G. Gilmore, Spacecraft thermal control handbook, Aerospace Press, (2003), 21-69. [15] Philippe Poinas, Satellite Thermal Control Engineering, SME04, ESTEC Thermal and Structure Division, 2004, p. 66. [16] Specialists in materials and applications, Spacecraft Thermal Control and Conductive Paints/Coatings and Services Catalog, AZ Technology, 2008, [Online]. Available at: http://www.aztechnology.com. [17] C. J. Savage, Thermal control of spacecraft, Spacecraft Systems Engineering, John Wiley and Sons, 2011, pp. 357-394.
|