Keywords and phrases: laser ablation, silver nanoparticles, laser wavelength, particle size antibacterial activity.
Received: October 16, 2021; Accepted: November 11, 2021; Published: December 8, 2021
How to cite this article: Ruaa A. Mohammed, Ghada Mohammed Saleh and Falah A.-H. Mutlak, Influence of laser ablation wave lengths 355, 532 and 1064 nm on the structural properties of silver nanoparticle size with biological application, JP Journal of Heat and Mass Transfer 24(2) (2021), 333-346.
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References [1] E. Fazio, B. Gökce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C. G. Zanchi, P. M. Ossi, M. Dell Aglio, L. D. Urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso and F. Neri, Nanoparticles engineering by pulsed laser ablation in liquids: concepts and applications, Nanomaterials 10(11) (2020), 2317. [2] M. Rafique, M. S. Rafique, U. Kalsoom, A. Afzal, S. H. Butt and A. Usman, Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature, Opt. Quantum Electron. 51 (2019), 179. [3] N. G. Semaltianos, Nanoparticles by laser ablation, Crit. Rev. Solid State Mater. Sci. 35 (2010), 105-124. [4] D. S. Zhang, B. Göekce and S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications, Chem. Rev. 117 (2017), 3990-4103. [5] R. M. Altuwirqi, A. S. Albakri, H. Al-Jawhari and E. A. Ganash, Green synthesis of copper oxide nanoparticles by pulsed laser ablation in spinach leaves extract, Optik 219 (2020), 165280. [6] J. W. Jeon, S. Yoon, H. W. Choi, J. Kim, D. Farson and S. H. Cho, The effect of laser pulse widths on laser - Ag nanoparticle interaction: femto- to nanosecond lasers, Appl. Sci. 8(1) (2018), 112. [7] F. Correard, K. Maximova, M. A. Estève, C. Villard, M. Roy, A. Al-Kattan, M. Sentis, M. Gingras, A. V. Kabashin and D. Braguer, Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications, International Journal of Nanomedicine 9 (2014), 5415. [8] J. S. Jeon and C. S. Yeh, Studies of silver nanoparticles by laser ablation method, Journal of the Chinese Chemical Society 45(6) (1998), 721-726. [9] M. Chaja, T. Kramer and B. Neuenschwander, Influence of laser spot size and shape on ablation efficiency using ultrashort pulse laser system, Procedia. CIRP 74 (2018), 300-304. [10] M. A. Al-Azawi, N. Bidin, A. K. Ali, K. I. Hassoon and M. Abdullah, Effect of liquid layer thickness on the ablation efficiency and the size-control of silver colloids prepared by pulsed laser ablation, Modern Appl. Sci. 9(6) (2015), 20. [11] A. Semerok, B. Salle, J. F. Wagner and G. Petite, Femtosecond, picosecond, and nanosecond laser microablation: Laser plasma and crater investigation, Laser and Particle Beams 20(1) (2002), 67-72. [12] T. Tsuji, K. Iryo, H. Ohta and Y. Nishimura, Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the efficiencies of colloid formation, Japanese J. Appl. Phys. 39(10) (2000), 981. [13] T. Tsuji, K. Iryo, Y. Nishimura and M. Tsuji, Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II), Journal of Photochemistry and Photobiology A: Chemistry 145(3) (2001), 201-207. [14] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow and H. Sawabe, Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant, Journal of Physical Chemistry B 105(22) (2001), 5114-5120. [15] Y. H. Chen and C. S. Yeh, Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles, Colloids and Surfaces A Physicochemical and Engineering Aspects 197(1-3) (2002), 133-139. [16] J. H. Yoo, S. H. Jeong, R. Greif and R. E. Russo, Explosive change in crater properties during high power nanosecond laser ablation of silicon, J. Appl. Phys. 88(3) (2000), 1638-1649.
|