Keywords and phrases: hump effect, striated media, homogenization, viscosity solutions.
Received: August 1, 2021; Accepted: September 13, 2021; Published: November 12, 2021
How to cite this article: Toyo Koffi Edarh-Bossou, Homogenization of the mathematical modelling of the hump effect, Advances in Differential Equations and Control Processes 25(2) (2021), 213-229. DOI: 10.17654/DE025020213
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References:
[1] G. Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations, Calculus of Variations and Partial Differential Equations 30 (2007), 449-466. [2] A. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932. [3] C. M. Brauner, T. K. Edarh-Bossou, G. Namah and C. Schmidt-Lainé, Préétude sur l’homogénéisation de l’effet Hump, Rapport, Univ. Bordeaux I, Ens-Lyon, Juin 1990. [4] A. Bensoussan, J.-L. Lions and G. Papanicolau, Asymptotic Analysis for Periodic Structures, North Holland, 1978. [5] L. A. Caffarelli, P. E. Souganidis and L. Wang, Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media, Commun. Pure Appl. Math. 58 (2005), 319-361. [6] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equation, Bull. Amer. Math. Soc. (N.S.) 27(1) (1992), 1-67. [7] T. K. Edarh-Bossou, Modélisation numérique de la combustion d’un bloc de propergol solide - effet hump, DEA, Univ. Claude-Bernard Lyon I-ENS Lyon, 1989. [8] T. K. Edarh-Bossou, Etude de la propagation d’un front de flamme dans un milieu strié, Thèse de Doctorat, Univ. Claude-Bernard Lyon I-ENS Lyon, 1993. [9] T. K. Edarh-Bossou, Mathematical modelling of the Hump effect, Advances in Differential Equations and Control Processes 25(1) (2021), 99-113. [10] Jérémy Firozaly, Homogenization of Hamilton-Jacobi equations and applications to traffic flow modeling, Information Theory, Thèse de Doctorat, Université Paris-Est, 2017. [11] J. L. Lions, Problème aux limites non homogènes et applications, Vols. 1 & 2, Paris - Dunod, 1968. [12] P. L. Lions, G. Papanicolau and S. R. S. Varadan, Homogenization of Hamilton-Jacobi equation, Univ. Paris Dauphine, 1987 (preprint). [13] G. Namah, Etude de deux modèles de combustion en phase gazeuse et en milieu strié, Thèse de Doctorat, Univ. Bordeaux I, 1990. [14] C. Schmidt-Lainé and T. K. Edarh-Bossou, Some results regarding an equation of Hamilton-Jacobi equation, Archivum Mathematicum, Tomus 35, 1999.
|